Question 11, Exercise 3.3

Solutions of Question 11 of Exercise 3.3 of Unit 03: Vectors. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.

Show that the vectors 3ˆi2ˆj+ ˆk.ˆi3ˆj5ˆk and 2ˆi+ˆj4ˆk form a right angle triangle.

Let a=3ˆi2ˆj+ˆk. b=ˆi3ˆj+5ˆk and c=2ˆi+ˆj4ˆk. Then |a|=(3)2+(2)2+(1)2|a|=14,|b|=(1)2+(3)2+(5)2|b|=35,and|c|=(2)2+(1)2+(4)2=21|a|2+|c|2=|b|214+21=3535=35 Thus by Pytagorous theorem, the vectors a,b and c represent the sides of triangle and they form right angle triangle. Also if we see ac=(3ˆi2ˆj+ˆk)(2ˆi+ˆj4ˆk)ac=624=0. ac. or sides represented by a and c form right angle with each other.

Show that P(1,0,1),Q(1,1,1) and R(1,1.0) forms a right isosceles triangle.

We find vectors representing the sides of triangle from the ver-tices given. PQ=OQOPPQ=(ˆi+ˆj+ˆk)(ˆi+ˆk)=ˆjQR=OROQQR=(ˆi+ˆj)(ˆi+ˆj+ˆk)=ˆkPR=OROPPR=(ˆi+ˆj)(ˆiˆk)=ˆjˆk Now |PQ|=(1)2=1|QR|=(1)2=1, and |PR|=(1)2+(1)2=2. We observe that
|PQ|2+|QR|2=|PR|2.
P(1.0.1)Q(1,1,1) and R(1.1,0) forms a right angle triangle.
Also |PQ|=|QR|, so the the right angle triangle is also isosceles.