Question 11, Exercise 3.3
Solutions of Question 11 of Exercise 3.3 of Unit 03: Vectors. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
Question 11 (i)
Show that the vectors 3ˆi−2ˆj+ ˆk.ˆi−3ˆj−5ˆk and 2ˆi+ˆj−4ˆk form a right angle triangle.
Solution
Let →a=3ˆi−2ˆj+ˆk. →b=ˆi−3ˆj+5ˆk and →c=2ˆi+ˆj−4ˆk. Then |→a|=√(3)2+(−2)2+(1)2⇒|→a|=√14,|→b|=√(1)2+(−3)2+(5)2|→b|=√35,and|→c|=√(2)2+(1)2+(−4)2=√21|→a|2+|→c|2=|→b|214+21=3535=35 Thus by Pytagorous theorem, the vectors →a,→b and →c represent the sides of triangle and they form right angle triangle. Also if we see →a⋅→c=−(3ˆi−2ˆj+ˆk)⋅(2ˆi+ˆj−4ˆk)⇒→a⋅→c=6−2−4=0. ∴→a⋅→c. or sides represented by →a and →c form right angle with each other.
Question 11 (ii)
Show that P(1,0,1),Q(1,1,1) and R(1,1.0) forms a right isosceles triangle.
Solution
We find vectors representing the sides of triangle from the ver-tices given.
→PQ=→OQ−→OP⇒→PQ=(ˆi+ˆj+ˆk)−(ˆi+ˆk)=ˆj→QR=→OR−→OQ⇒→QR=(ˆi+ˆj)−(ˆi+ˆj+ˆk)=−ˆk→PR=→OR−→OP⇒→PR=(ˆi+ˆj)−(ˆi−ˆk)=ˆj−ˆk Now |→PQ|=√(1)2=1|→QR|=√(−1)2=1, and |→PR|=√(1)2+(−1)2=√2.
We observe that
|→PQ|2+|→QR|2=|→PR|2.
⇒P(1.0.1)Q(1,1,1) and R(1.1,0) forms a right angle triangle.
Also |→PQ|=|→QR|, so the the right angle triangle is also isosceles.
Go To