Question 2 Exercise 3.4

Solutions of Question 2 of Exercise 3.4 of Unit 03: Vectors. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.

Show in two different ways that the vectors a and b are parallel to a=ˆi+2ˆj3ˆk,b=2ˆi4ˆj+ 6ˆk

First Way a×b=|ˆiˆjˆk123246|=(1212)ˆi(6+6)ˆj+(44)ˆka×b=0.ab.

Second Way ab=(ˆi+2ˆj3ˆk)(2ˆi4ˆj+6ˆk)ab=1(2)+2(4)3(6)ab=28. Also |a|=(1)2+(2)2+(3)2|a|=14|b|=(2)2+(4)2+(6)2|b|=56cosθ=ab|a|=281456θ=cos1(2821414)θ=cos1(1)=180.ab.

Show in two different ways that the vectors a and b are parallel to a=3ˆi+6ˆj9ˆk, b=ˆi+2ˆj3ˆk

First Way a×b=|ˆiˆjˆk369123|=(18+18)ˆi+(9+9)ˆj+(66)ˆka×b=0.ab.

Second Way ab=(3ˆi+6ˆj9ˆk)(ˆi+2ˆj3ˆk)ab=3(1)+6(2)9(3)ab=42 Also |a|=(3)2+(6)2+(9)2|a|=12¯6 and|b|=(1)2+(2)2+(3)2|b|=14. Now we know that
cosθ=abi|b|=4214126θ=cos1(42×4214×126)θ=cos1(17641764)θ=cos1(1)=0ab.