Question 2 Exercise 3.4
Solutions of Question 2 of Exercise 3.4 of Unit 03: Vectors. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
Question 2(i)
Show in two different ways that the vectors →a and →b are parallel to →a=−ˆi+2ˆj−3ˆk,→b=2ˆi−4ˆj+ 6ˆk
Solution
First Way →a×→b=|ˆiˆjˆk−12−32−46|=(12−12)ˆi−(−6+6)ˆj+(4−4)ˆk⇒→a×→b=0.⇒→a‖→b.
Second Way →a⋅→b=(−ˆi+2ˆj−3ˆk)⋅(2ˆi−4ˆj+6ˆk)⇒→a⋅→b=−1(2)+2(−4)−3(6)⇒→a⋅→b=−28. Also |→a|=√(−1)2+(2)2+(−3)2⇒|→a|=√14|→b|=√(2)2+(−4)2+(6)2⇒|→b|=√56cosθ=→a⋅→b|→a|=−28√14√56⇒θ=cos−1(−282√14√14)⇒θ=cos−1(−1)=180∘.⇒→a‖→b.
Question 2(ii)
Show in two different ways that the vectors →a and →b are parallel to →a=3ˆi+6ˆj−9ˆk, →b=ˆi+2ˆj−3ˆk
Solution
First Way →a×→b=|ˆiˆjˆk36−912−3|=(−18+18)ˆi+(−9+9)ˆj+(6−6)ˆk⇒→a×→b=0.⇒→a‖→b.
Second Way
→a⋅→b=(3ˆi+6ˆj−9ˆk)⋅(ˆi+2ˆj−3ˆk)⇒→a⋅→b=3(1)+6(2)−9(−3)⇒→a⋅→b=42
Also |→a|=√(3)2+(6)2+(−9)2⇒|→a|=√12¯6 and|→b|=√(1)2+(2)2+(−3)2⇒|→b|=√14.
Now we know that
cosθ=→a⋅→bi|→b|=42√14√126⇒θ=cos−1(√42×4214×126)⇒θ=cos−1(√17641764)⇒θ=cos−1(1)=0∘⇒→a‖→b.
Go To