Question 6 Exercise 3.4
Solutions of Question 6 of Exercise 3.4 of Unit 03: Vectors. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
Question 6(i)
A force →F=3ˆi−2ˆj+5ˆk acts on a particle at (1,−2,2). Find the moment or torque of the force about the origin.
Solution
Let →r, the position vector of point P(1,−2.2) relative to the origin that is O(0,0,0), then
\begin{align}\vec{r}&=\overrightarrow{O P}\\
&=(1,-2,2)-(0,0,0) \\
\Rightarrow \vec{r}&=(1,-2,2).\\
\text { Hence } \vec{M}-\vec{r} \times \vec{F}&=\left|ijk1−223−25 \right| \\
\Rightarrow \vec{M}&=(-10+4) \hat{i}-(5-6) \hat{j}+(-2+6) \hat{k} \\
\Rightarrow \vec{M}&=-6 \hat{i}+\hat{j}+4 \hat{k}.\end{align}
Question 6(ii)
A force →F=3ˆi−2ˆj+5ˆk acts on a particle at (1,−2,2). Find the moment or torque of the force about the point (1,2,1)
Solution
Let →r be the position vector of point P(1,−2,2) relative to A(1,2,1) then
\begin{align}\vec{r}&=\overrightarrow{A P}\\
&=(1,-2,2)-(1,2 ,1)\\
\Rightarrow \vec{r}&=(0 ,-4,1) \\
\vec{M}&=\vec{r} \times \vec{F}\\
&=\left |ˆiˆjˆk0−413−25\right| \\
\Rightarrow \vec{M}&=(-20+2) \hat{i}-(0-3) \hat{j}+(0+12) \hat{k} \\
\Rightarrow \vec{M}&=-18 \hat{i}+3 \hat{j}+12 \hat{k} .\end{align}
Go To