Question 6 Exercise 3.4

Solutions of Question 6 of Exercise 3.4 of Unit 03: Vectors. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.

A force F=3ˆi2ˆj+5ˆk acts on a particle at (1,2,2). Find the moment or torque of the force about the origin.

Let r, the position vector of point P(1,2.2) relative to the origin that is O(0,0,0), then
\begin{align}\vec{r}&=\overrightarrow{O P}\\ &=(1,-2,2)-(0,0,0) \\ \Rightarrow \vec{r}&=(1,-2,2).\\ \text { Hence } \vec{M}-\vec{r} \times \vec{F}&=\left|ijk122325 \right| \\ \Rightarrow \vec{M}&=(-10+4) \hat{i}-(5-6) \hat{j}+(-2+6) \hat{k} \\ \Rightarrow \vec{M}&=-6 \hat{i}+\hat{j}+4 \hat{k}.\end{align}

A force F=3ˆi2ˆj+5ˆk acts on a particle at (1,2,2). Find the moment or torque of the force about the point (1,2,1)

Let r be the position vector of point P(1,2,2) relative to A(1,2,1) then
\begin{align}\vec{r}&=\overrightarrow{A P}\\ &=(1,-2,2)-(1,2 ,1)\\ \Rightarrow \vec{r}&=(0 ,-4,1) \\ \vec{M}&=\vec{r} \times \vec{F}\\ &=\left |ˆiˆjˆk041325\right| \\ \Rightarrow \vec{M}&=(-20+2) \hat{i}-(0-3) \hat{j}+(0+12) \hat{k} \\ \Rightarrow \vec{M}&=-18 \hat{i}+3 \hat{j}+12 \hat{k} .\end{align}