Question 3 & 4 Exercise 3.5
Solutions of Question 3 & 4 of Exercise 3.5 of Unit 03: Vectors. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
Question 3
For the vectors →a=3ˆi+2ˆk, →b=ˆi+2ˆj+ˆk and →c=−ˆj+4ˆk.
Verify that:
→a⋅→b×→c=→b⋅→c×→a=→c⋅→a×→b
but
→a⋅→b×→c=−→c×→b⋅→a
Solution
→a⋅→b×→c=|3021210−14|→a⋅→b×→c=3(8+1)+2(−1−0)⇒→a⋅→b×→c=25………..(1)→b⋅→c×→a=|1210−14302|→b⋅→c×→a=1(−2−0)+3(8+1)⇒→b⋅→c×→a=25………...(2)→c⋅→a×→b=|0−14302121|→c⋅→a×→b=1(3−2)+4(6−0)⇒→c⋅→a×→b=1+24=25……(3) From (1), (2) and (3), we get that
→a⋅→b×→c=→b⋅→c×→a=→c⋅→a⋅→b Now →c×→b=|ˆiˆjˆk0−14121|→c×→b=(−1−8)ˆi−(0−4)ˆj+(0+1)ˆk→c×→b=−9ˆi+4ˆj+ˆk Taking dut product with →a. we have
→c×→b⋅→a=(−9ˆi+4ˆj+ˆk)⋅(3ˆi+2ˆk)⇒→c×→b⋅→a=−9⋅3+4⋅0+1.2=−25
Multiplying both sides by -1
−→c×→b⋅→a=25....(4)
From (1) and (4), we get that
→a⋅→b×→c=→c×→b⋅→a.
Question 4
Verify that the triple product of ˆi−ˆj,ˆj−ˆk and ˆk−ˆi is zero.
Solution
Let
→a=ˆi−ˆj,→b=ˆj−ˆk
and
→c=ˆk−ˆi
Then
→a⋅→b×→c=|1−10011−101|→a⋅→b×→c=1(1−0)+1(0−1)⇒→a⋅→b×→c=1−1=0.
Hence the scalar triple product of the given vectors is zero.
Go To