Question 8 Exercise 3.5

Solutions of Question 8 of Exercise 3.5 of Unit 03: Vectors. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.

Find the volume of tetrahedron with the Vectors as coterminous edges a=ˆi+2ˆj+3ˆk,b=4ˆi+5ˆj+6ˆk,c=7ˆj+8ˆk

The volume of tetrahedron is V=16[uv×w]V=16|123456078|V=161(4042)4(1621)V=16(2+20)=3 units. 

Find the volume of tetrahedron with A(2,3,1),B(1,2,0), C(0.2,5).D(0.1,2) as vertices.

Position vector of A,OA=2ˆi+3ˆj+ˆk

Position vector of B,OB=ˆi2ˆj

Position vector of C,OC=2ˆj5ˆk

Position vector of D,OD=ˆj2ˆk

We find the edges vectors a=AB=OBOA=(ˆi2ˆj)(2ˆi3ˆj+ˆk)a=3ˆi5ˆjˆkb=AC=OCOA=2ˆj5ˆk(2ˆi+3ˆj+ˆk)b=2ˆiˆj6ˆkc=AD=ODOA=ˆj2ˆk(2ˆi+3ˆj+ˆk)c=2ˆi2ˆj3ˆk The volume of tetiahedron is: V=16|351216223|V=16[3(312)+5(612)1(42)]=16[27302]V=56 units.  Volume can not he negative, so V:56 units cube.