Question 4 & 5 Review Exercise 3

Solutions of Question 4 & 5 of Review Exercise 3 of Unit 03: Vectors. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.

If r=xˆi+yˆj+zˆk, then find (r׈i)(ˉr׈j)+xy

We have to find
(r׈i)(r׈j)+xy  Now r׈i=|ˆiˆjˆkxyz100|=(00)ˆi(0z)ˆj+(0y)ˆkr׈i=zˆjyˆk..(1) and r׈j=|ˆiˆjˆkxyz010|=(0z)ˆi(00)ˆj+(x0)ˆk r׈j=zˆi+xˆk Taking dot product of (1) and (2)

(r׈i)(r׈j)=(zˆjyˆk)(zˆi+xˆk)(r׈i)(r׈j)=0+0xy(r׈i)(r×j)=xy Now (r׈i)(r׈j)+xy=xy+xy=0.

If a=7ˆiˆj4ˆk and b=2ˆi+6ˆj+3ˆk, then find the projection of a on b.

We have to compute

Projection of a on b=ab|b|

ub=(7ˆi+ˆj4ˆk)(2ˆi+6ˆj+3ˆk)ab=14+612=8 and |b|=(2)2+(6)2+(3)2|b|=49=7. Hence projection of a on b=ab|b|

Projection of aonb=87