Question 8 & 9 Review Exercise 3
Solutions of Question 8 & 9 of Review Exercise 3 of Unit 03: Vectors. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
Question 8
Find the area of triangle whose vertices are (0,0,2),(−1,3,2),(1,0,4).
Solution
Lel A(0,0,2), B(−1,3,2) and C(1,0,4).
Let →a=→AB=(−1,3,2)−(0,0,2) ⇒→a=(−1,3,0)
→b=→BC=(1,0,4)−(−1,3,2) ⇒→b=(2,−3,2).
We know that area of triangle is half of the area of parallelogram.
Area of triangle=12|→a×→b|....(1).
→a×→b=|ˆiˆjˆk−1302−32|∴→a×→b=(ˆi+2ˆj⋅3ˆk⇒|→a×→b|=√(6)2+(2)2+(−3)2⇒|→a×→b|=√49=7.
Putting |→a×→b|=7 in (1), we get
Area of triangle=72 units square.
Question 9
Find the area of parallelogram with vertices A(1,2,3),B(5,8,1), C(4,−2,2) and D(0,−8,−2).
Solution
Let →a=→AB=(5,8,1)−(1,2,−3)⇒→a=(4,6,4)→b=→AC=(4,2,2)−(1,2,3)⇒→b=(3,−4,5) Now →a×→b=|ijk464345|⇒→a×→b=(30−16)ˆi−(20−12)ˆj+(−16−18)ˆk⇒→a×→b=46ˆi−8ˆj−34ˆk.⇒|→a×→b|=√(46)2+(−8)2+(−34)2=√3336. Thus the area of parallelogram is: |→a×→b|=√3336 units square.
Go To