Question 8 & 9 Review Exercise 3

Solutions of Question 8 & 9 of Review Exercise 3 of Unit 03: Vectors. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.

Find the area of triangle whose vertices are (0,0,2),(1,3,2),(1,0,4).

Lel A(0,0,2), B(1,3,2) and C(1,0,4).

Let a=AB=(1,3,2)(0,0,2) a=(1,3,0)

b=BC=(1,0,4)(1,3,2) b=(2,3,2).

We know that area of triangle is half of the area of parallelogram.
Area of triangle=12|a×b|....(1). a×b=|ˆiˆjˆk130232|a×b=(ˆi+2ˆj3ˆk|a×b|=(6)2+(2)2+(3)2|a×b|=49=7. Putting |a×b|=7 in (1), we get
Area of triangle=72 units square.

Find the area of parallelogram with vertices A(1,2,3),B(5,8,1), C(4,2,2) and D(0,8,2).

 Let a=AB=(5,8,1)(1,2,3)a=(4,6,4)b=AC=(4,2,2)(1,2,3)b=(3,4,5) Now a×b=|ijk464345|a×b=(3016)ˆi(2012)ˆj+(1618)ˆka×b=46ˆi8ˆj34ˆk.|a×b|=(46)2+(8)2+(34)2=3336. Thus the area of parallelogram is: |a×b|=3336 units square.