Question 1 Exercise 5.2
Solutions of Question 1 of Exercise 5.2 of Unit 05: Mascellaneous series. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
Question 1(i)
Sum up to n terms the series 1.2+2.22+3.23+4.24+….
Solution
Let Sn=1.2+2.22+3⋅23+4⋅24+…+n⋅2n....(i)2Sn=1.22+2.23+3.24+4.25+…+n⋅2n....(ii) Suburacting the (ii) from (i), we get (1−2)Sn=1⋅2+(2−1)22+(3−2)22+(4−3)23+…+(n−(n−1))2n−n⋅2n+1=(2+22+23++…+2n)−n⋅2n+1=2(2n−1)2−1−n⋅2n+1=2n+1−2−n⋅2n+1=2+n⋅2n+1−2n+1Sn=2+(n−1)2n+1
Question 1(ii)
Sum up to n terms the series 1+4x+7x2+10x3+….
Solution
Let Sn=1+4x+7x2+10x3+…+(3n−2)xn−1....(i)xSn=x+4x2+7x3+10x4+…+(3n−2)x4t....(ii) Subtracting the (ii) from (i), we get (1−x)Sn=1+(4−1)x+(7−4)x2+(10−7)x3+…+(3n−2,3n−5))xn−1−(3n−2)xn=1+3x+3x2+3x3+…+3xn−1−(3n−2)xn=1+3x(1−xn−1)1−x−(3n−2)xnSn=1−(3n−2)xn1−x+3x(1−xn−1)(1−x)2
Question 1(iii)
Sum up to n terms the series 1+2x+3x2+4x3+….
Solution
Let Sn=1+2x+3x2+4x3+…+(n−1)n2+nxn....(i)xSn=x+2x2+3x3+4x4+…+(n−1)n−1+nxn....(ii) Subtracting the (ii) from (i), we get (1−x)Sn=1+(2−1)x+(3−2)x2+(4−3)x3+…+(n−(n−1))xn−1−nxn=1+x+x2+x3+…+xn−1−nxn=1(1−xn)1−x−nxnSn=1−xn(1−x)2−nxn1−x
Question 1(iv)
Sum up to n terms the series 1+32+54+78+…
Solution
Let Sn=1+32+54+78+…+2n−12n−1Sn=1+32+522+723+…+2n−12n−1....(i) Multiply (i) both sides by 12, we get 12Sn=12+322+523+724+…+2n−12n....(ii) Subtracting the (ii) from (i), we get (1−12)Sn=1+(22+222+223+…+22n−1)−2n−12n=1+(1+12+122+123+…+12n−1)−2n−12n12Sn=1+1(1−(12)n−1)1−12−2n−12nSn=2+4[1−(12)n−1]−22n−12nSn=2+4[1−(12)n−1]−2n−12n−1
Question 1(v)
Sum up to n terms the series 1−7x+13x2−19x3+…
Solution
Let Sn=1+7(−x)+13(−x)2+19(−x)3+…−(6n+5)(−x)n−1....(i)−xSn=−x+7(−x)2+13(−x)3+19(−x)4+…+(6n+5)(−x)n....(ii) Subtracting the (ii) from (i), we get (1+x)Sn=1+(7−1)(−x)+(13−7)(−x)2+…+[6n+5−(6n−1)]×(−x)n−1−(6n+5)(−x)n=1+6(−x)+6(−x)2+…+6(−x)n−1−(6n+5)(−x)n=1+6(−x)(1−(−x)n−1)1+x−(6n+5)(−x)n⇒Sn=1−(6n+5)(−x)n1+x−6x(1−(−x))n−1(1+x)2
Go To