Question 1 Exercise 5.2

Solutions of Question 1 of Exercise 5.2 of Unit 05: Mascellaneous series. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.

Sum up to n terms the series 1.2+2.22+3.23+4.24+.

Let Sn=1.2+2.22+323+424++n2n....(i)2Sn=1.22+2.23+3.24+4.25++n2n....(ii) Suburacting the (ii) from (i), we get (12)Sn=12+(21)22+(32)22+(43)23++(n(n1))2nn2n+1=(2+22+23+++2n)n2n+1=2(2n1)21n2n+1=2n+12n2n+1=2+n2n+12n+1Sn=2+(n1)2n+1

Sum up to n terms the series 1+4x+7x2+10x3+.

Let Sn=1+4x+7x2+10x3++(3n2)xn1....(i)xSn=x+4x2+7x3+10x4++(3n2)x4t....(ii) Subtracting the (ii) from (i), we get (1x)Sn=1+(41)x+(74)x2+(107)x3++(3n2,3n5))xn1(3n2)xn=1+3x+3x2+3x3++3xn1(3n2)xn=1+3x(1xn1)1x(3n2)xnSn=1(3n2)xn1x+3x(1xn1)(1x)2

Sum up to n terms the series 1+2x+3x2+4x3+.

Let Sn=1+2x+3x2+4x3++(n1)n2+nxn....(i)xSn=x+2x2+3x3+4x4++(n1)n1+nxn....(ii) Subtracting the (ii) from (i), we get (1x)Sn=1+(21)x+(32)x2+(43)x3++(n(n1))xn1nxn=1+x+x2+x3++xn1nxn=1(1xn)1xnxnSn=1xn(1x)2nxn1x

Sum up to n terms the series 1+32+54+78+

Let Sn=1+32+54+78++2n12n1Sn=1+32+522+723++2n12n1....(i) Multiply (i) both sides by 12, we get 12Sn=12+322+523+724++2n12n....(ii) Subtracting the (ii) from (i), we get (112)Sn=1+(22+222+223++22n1)2n12n=1+(1+12+122+123++12n1)2n12n12Sn=1+1(1(12)n1)1122n12nSn=2+4[1(12)n1]22n12nSn=2+4[1(12)n1]2n12n1

Sum up to n terms the series 17x+13x219x3+

Let Sn=1+7(x)+13(x)2+19(x)3+(6n+5)(x)n1....(i)xSn=x+7(x)2+13(x)3+19(x)4++(6n+5)(x)n....(ii) Subtracting the (ii) from (i), we get (1+x)Sn=1+(71)(x)+(137)(x)2++[6n+5(6n1)]×(x)n1(6n+5)(x)n=1+6(x)+6(x)2++6(x)n1(6n+5)(x)n=1+6(x)(1(x)n1)1+x(6n+5)(x)nSn=1(6n+5)(x)n1+x6x(1(x))n1(1+x)2