Question 1 Exercise 5.3

Solutions of Question 1 of Exercise 5.3 of Unit 05: Mascellaneous series. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.

Find n term and sum to n terms each of the series 4+13+28+49+76+

\begin{align} & a_2-a_1=13-4=9 \\ & a_3-a_2=28-13=15 \\ & a_4-a_3=49-28=21 \\ & \cdots \quad \cdots \quad \cdots \\ & \cdots \quad \cdots \quad \cdots \\ & a_n-a_{n-1}=(n-1)th \quad\text{term of sequence}\quad 9,15,21,...\end{align} Which is in A.P. column wise, we get anan1=9+15+21++(n1)=n12[2.9+(n2)6]=n12[18+6n12]=n12[6+6n]an=3(n21)+a1an=3n23+4a1=4an=3n2+1 Taking summation of the both sides nr=1ar=3nr=1r2+nr=11=3n(n+1)(2n+1)6+n=n[(n+1)(2n+1)2+1]=n[2n2+3n+1+22]nr=1ar=n2(2n2+3n+3)Hence3n2+1;n2(2n2+3n+3)