Question 3 Exercise 5.3

Solutions of Question 3 of Exercise 5.3 of Unit 05: Miscullaneous Series. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.

Find n term and sum to n terms each of the series 4+10+18+28+40+

We use the method of difference as: a2a1=104=6a3a2=1810=8a4a3=2818=10... ... ... ... ... ... anan1=(n1) term of the sequence  6,10,8, which is a A.P. Adding column wise, we get \begin{align}& a_n-a_1=6+10+8-\ldots +(n-1) \text { terms } \\ & =\dfrac{n-1}{2}[2 \cdot 6+(n-2) \cdot 2] \\ & =\dfrac{n-1}{2}[12+2 n-4] \\ & =\dfrac{n-1}{2}[2 n+8]=2 \cdot \dfrac{n-1}{2} \cdot[n+4] \\ & \Rightarrow a_n=n^2+3 n-4+a_1 \\ & \Rightarrow a_n=n^2+3 n-4+4 \quad \because a_1=4 \\ & \Rightarrow a_n=n^2+3 n\end{align} Taking summation of the both sides \begin{align}\sum_{r=1}^n a_r&=\sum_{r=1}^n r^2+3 \sum_{r=1}^n r \\ & =\dfrac{n(n+1)(2 n+1)}{6}+3 \dfrac{n(n+1)}{2} \\ & =\dfrac{n(n+1)}{2}[\dfrac{2 n+1}{3}+3] \\ & =\dfrac{n(n+1)}{2}[\dfrac{2 n+1+9}{3}] \\ & =\dfrac{n(n+1)}{2}[\dfrac{2 n+10}{3}] \\ & =\dfrac{n}{3}(n+1)(n+5)\\ \Rightarrow \sum_{r=1}^n a_r&=\dfrac{n}{3}(n+1)(n+5)\\ \text{Hence}\quad n^2+3 n;\dfrac{n}{3}(n+1)(n+5)\end{align}