Question 1 and 2 Exercise 6.2
Solutions of Question 1 and 2 of Exercise 6.2 of Unit 06: Permutation, Combination and Probablity. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
Question 1(i)
Evaluate 6P6
Solution
6P6=6!(6−6)!=6!=720
Question 1(ii)
Evaluate 20P2
Solution
20P2=20!(20−2)!=20.19.18!18!=20×19=380
Question 1(iii)
Evaluate 16P3
Solution
16P3=16!(16−3)!=16⋅15⋅14⋅13!13!=3360
Question 2(i)
Solve nP5=56(nP3) for n.
Solution
We are given: nP5=56(nP3)⇒n!(n−5)!=56n!(n−3)!⇒1(n−5)!=56(n−3)!⇒1(n−5)!=56(n−3)(n−4)(n−5)!⇒(n−3)(n−4)=56⇒n2−7n+12−56=0⇒n2−7n−44=0⇒n2+4n−11n−44=0⇒n(n+4)−11(n+4)=0⇒(n−11)(n+4)=0n=11orn=−4 But n can not be negative, so n=11.
Question 2(ii)
Solve nP5=9(n−1P4) for n.
Solution
We are given: nP5=9(n−1P4)⇒n!(n−5)!=9(n−1)!(n−1−4)!⇒n(n−1)!(n−5)!=9(n−1)!(n−5)!⇒n=9
Question 2(iii)
Solve n2P2=600 for n
Solution
We are given: n2P2=60⇒(n2)!(n2−2)!=600⇒(n2)(n2−1)(n2−2)!(n2−2)!=600⇒n4−n2−600=0⇒n4−25n2+24n2−600=0⇒n2(n2−25)+24(n2−25)=0⇒(n2−25)(n2+24)=0n2−25=0orn2+24=0n2=25orn2=−24n=±5orn=√24i but n can not be negative nor it can be imaginary, therefore, n=5.
Go To