Question 2 Exercise 6.3

Solutions of Question 2 of Exercise 6.3 of Unit 06: Permutation, Combination and Probablity. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.

Find n and r if nPr=840 and nCr=35.

We are given: nPr=n!(nr)!=840....(i)nCr=n!(nr)!r!=35....(ii) Dividing Eq.(i) by Eq.(ii) n!(nr)!(nr)!r!n!=84035r!=24orr=4 Putting r=4 in Eq.(ii), we get \begin{align} & { }^n C_4=\dfrac{n !}{(n-4) ! 4 !}=35 \\ & \Rightarrow \dfrac{n(n-1)(n-2)(n-3)(n-4) !}{(n-4) !}=35 \times 24=840 \\ & \Rightarrow n(n-1)(n-2)(n-3)=840 \\ & \Rightarrow n(n-3)(n-1)(n-2)=840 \\ & \Rightarrow(n^2-3 n)(n^2-3 n+2)=840 \end{align} Let y=n23n then the above last equation becomes \begin{align} & y(y+2)=840 \\ & \Rightarrow y^2+2 y-840=0 \\ & \Rightarrow y^2+30 y-28 y-840=0 \\ & \Rightarrow y(y+30)-28(y+30)=0\\ &\Rightarrow(y-28)(y+30)=0\\ \Rightarrow \text{Either} y&=28, \text{or} y=-30\end{align} When y=28 then \begin{align} & n^2-3 n=28 \\ & \Rightarrow n^2-3 n-28=0 \\ & \Rightarrow n^2-7 n-4 n-28=0 \\ & \Rightarrow n(n-7)+4(n-7)=0 \\ & \Rightarrow(n-7)(n+4)=0 \end{align} $\RightarrowEithern=7,orn=-4.Butncannotbenegative,son=7$. \begin{align}\text{When} &y=-30 \text{then}\\ & n^2-3 n=-30 \\ & \Rightarrow n^2-3 n+30=0\end{align} $\Rightarrow n=\dfrac{3 \pm \sqrt{111} i}{2}Butncannotbecomplex.hencetheonlyvalueofn=7andr=4$.