Question 2 Exercise 6.3
Solutions of Question 2 of Exercise 6.3 of Unit 06: Permutation, Combination and Probablity. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
Question 2
Find n and r if nPr=840 and nCr=35.
Solution
We are given: nPr=n!(n−r)!=840....(i)nCr=n!(n−r)!r!=35....(ii) Dividing Eq.(i) by Eq.(ii) n!(n−r)!⋅(n−r)!r!n!=84035r!=24orr=4 Putting r=4 in Eq.(ii), we get nC4=n!(n−4)!4!=35⇒n(n−1)(n−2)(n−3)(n−4)!(n−4)!=35×24=840⇒n(n−1)(n−2)(n−3)=840⇒n(n−3)(n−1)(n−2)=840⇒(n2−3n)(n2−3n+2)=840 Let y=n2−3n then the above last equation becomes y(y+2)=840⇒y2+2y−840=0⇒y2+30y−28y−840=0⇒y(y+30)−28(y+30)=0⇒(y−28)(y+30)=0⇒Eithery=28,ory=−30 When y=28 then n2−3n=28⇒n2−3n−28=0⇒n2−7n−4n−28=0⇒n(n−7)+4(n−7)=0⇒(n−7)(n+4)=0 ⇒ Either n=7, or n=−4. But n can not be negative, so n=7. Wheny=−30thenn2−3n=−30⇒n2−3n+30=0 ⇒n=3±√111i2 But n can not be complex. hence the only value of n=7 and r=4.
Go To