Question 4 Exercise 7.2
Solutions of Question 4 of Exercise 7.2 of Unit 07: Permutation, Combination and Probablity. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
Question 4(i)
Find the coefticient of x23 in (x2−x)20
Solution
In the above expansion n=20,a=x2 and b=−x.
Let Tr,1 be the term containing x23 that is: Tr−1=20!(20−r)!r!(x2)20r(−x)r=20!(20−r)!r!(−1)r⋅x40−2r+r=20!(20−r)!r!(−1)rx40−r But Tr−1 containing x33 is possibic only if \begin{align}x^{40 \cdot r}&=x^{23}\\ \Rightarrow 40-r&=23\\ \Rightarrow r&=40-23=17\end{align} Putting r=17. in Tr+1 we get \begin{align}T_{17-1}&=\dfrac{20 !}{(20 \cdot 17) ! 17 !}(-1)^{17} x^{40-17} \\ \Rightarrow T_{18}&=-1140 x^{23}\end{align} Hence the coefficient of x23 in the expansion of (x2−x20) is −1140
Question 4(ii)
Find the coefticient of 1x4 in (2−1x)x
Solution
In the above expansion n=8,a=2 and b=−1x.
Let Tr+1 be the term containing x23 that is:
Tr+1=8!(8−r)!r!(2)8−r(−1x)r=8!(8−r)!r!28−r(−1)r(1x)r But Tr+1 conlaining x4 is possible only if \begin{align}\dfrac{1}{x^r}&=\dfrac{1}{x^4}\\ \Rightarrow 4=r\end{align} Putting r=4 in Tr+1 we get \begin{align}T_{4+1}&=\dfrac{8 !}{(8-4)!4!}2^4(-1)^4(\dfrac{1}{x^4})\\ \Rightarrow T_5&=^8C_4\, 2^4 x^{-4} \end{align} Hence the coefficient of 1x−1 in she expansion of (2−9x), is 8C424
Question 4(iii)
Find the coefticient of a6b3 in (2a−b3)9
Solution
In the above expansion n=9.a=2a and b=−b3.
Let Tr+1=9!9−r)!r!(2a)9−r(−b3)rTR+1=9!(9−r)!r!)29−r⋅(13r)a9−r⋅br But the term Tr+1 tontaining a6b3 is possible only if \begin{align}a^{9-r}b^r&=a^6 b^3\\ \Rightarrow 9 -r=6 \text{or} r=3\end{align} Putting r=3 in the above, we get \begin{align}T_{3+1}&=\dfrac{9 !}{(9-3) ! 3 !} 2^{9-3} \cdot(-\dfrac{1}{3})^3 a^{9-3}b^3 \\ T_4&=-^9C_3 2^6 \frac{1}{3^3} a^6 b^3 \\ \Rightarrow T_4=-^9C_3 \dfrac{2^6}{27} a^6 b^3 \end{align} Henee the coeficient of a6b3 in the expansion of (2a−b3) is −9C32627
Go To