Question 7 Exercise 7.2

Solutions of Question 7 of Exercise 7.2 of Unit 07: Permutation, Combination and Probablity. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.

Find (2+3)5+(23)5

Using binomial formula (2+3)5+(23)5=[(2)5+5C1243+5C223(3)2+5C322(3)4+5C42(3)4+5C5(3)5+(2)5+5C1243+5C222(3)2+5C322(3)3+5C42(3)45C5(3)5]=2(2)5+5C1253+5C224(3)2+5C323(3)4+5C422(3)4+25C5(3)5 simplifing, we get =225+25C223(3)2+25C42(3)4=232+21083+2529=64+480+180=692 Thus (2+3)5+(23)5=724

(1+2)4(12)

Using binomial formula (1+2)4(12)4=[1+4C12+4C2(2)2+4C3(2)3+4C4(2)4][14C12+4C2(2)24C3(2)3+4C4(2)4] simplifing, we get =24C12+24C3(2)3=242+24(2)3=82[1+(2)2]=82[1+2]=242. Thus (1+2)4(12)4=242

Find (a+b)5+(ab)5

(iii) (a+b)5+(ab)5

Solution: Using binomial theorem (a+b)5+(ab)5=[(50)a5+(51)a4b+(52)a3b2+(53)a2b3+(54)a1b4+(55)b5]+[(50)a5(51)a4b+(52)a3b2(53)a2b3+(54)a1b4(55)b5]

Simplifying, we get =2(50)a5+(51)a3b2+(54)ab4]=10a4b+20a2b3+2ab4.