Question 7 Exercise 7.2
Solutions of Question 7 of Exercise 7.2 of Unit 07: Permutation, Combination and Probablity. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
Question 7(i)
Find (2+√3)5+(2−√3)5
Solution
Using binomial formula (2+√3)5+(2⋅√3)5=[(2)5+5C1⋅24⋅√3+5C2⋅23⋅(√3)2+5C3⋅22⋅(√3)4+5C4⋅2⋅(√3)4+5C5⋅(√3)5+(2)5+5C1⋅24⋅√3+5C2⋅22⋅(√3)2+5C3⋅22(√3)3+5C4⋅2⋅(√3)4−5C5⋅(√3)5]=2(2)5+5C1⋅25⋅√3+5C2⋅24⋅(√3)2+5C3⋅23⋅(√3)4+5C4⋅22⋅(√3)4+25C5⋅(√3)5 simplifing, we get =2⋅25+25C2⋅23⋅(√3)2+25C4⋅2⋅(√3)4=2⋅32+2⋅10⋅8⋅3+2⋅5⋅2⋅9=64+480+180=692 Thus (2+√3)5+(2−√3)5=724
Question 7(ii)
(1+√2)4−(1−√2)−
Solution
Using binomial formula (1+√2)4−(1−√2)4=[1+4C1⋅√2+4C2⋅(√2)2+4C3⋅(√2)3+4C4⋅(√2)4]−[1−4C1⋅√2+4C2⋅(√2)2−4C3⋅(√2)3+4C4⋅(√2)4] simplifing, we get =24C1⋅√2+24C3⋅(√2)3=2⋅4⋅√2+2⋅4⋅(√2)3=8√2[1+(√2)2]=8√2[1+2]=24√2. Thus (1+√2)4−(1−√2)4=24√2
Question 7(iii)
Find (a+b)5+(a−b)5
Solution
(iii) (a+b)5+(a−b)5
Solution: Using binomial theorem (a+b)5+(a−b)5=[(50)a5+(51)a4b+(52)a3b2+(53)a2b3+(54)a1b4+(55)b5]+[(50)a5−(51)a4b+(52)a3b2−(53)a2b3+(54)a1b4−(55)b5]
Simplifying, we get =2(50)a5+(51)a3b2+(54)ab4]=10a4b+20a2b3+2ab4.
Go To