Question 13, Exercise 10.1

Solutions of Question 13 of Exercise 10.1 of Unit 10: Trigonometric Identities of Sum and Difference of Angles. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.

Express each of the following in the form rsin(θ+ϕ) where terminal ray of θ and ϕ are in the first quadrant 4sinθ+3cosθ. Identifying 4sinθ+3cosθ with rsin(θ+φ) gives 4sinθ+3cosθ=rcosφsinθ+rsinφcosθ(1) So 4=rcosφ and 3=rsinφ.

Squaring and adding r2cos2φ+r2sin2φ=42+32r2(cos2φ+sin2φ)=16+9r2=25r=5 Also rcosφ=45cosφ=4cosφ=45 and rsinφ=35sinφ=3sinφ=35. Thus, from (1), we have 4sinθ+3cosθ=5(45sinθ+35cosθ)=r(cosφsinθ+sinφcosθ)=rsin(θ+φ), where sinφ=35,cosφ=45 and r=5.

Express each of the following in the form rsin(θ+ϕ) where terminal ray of θ and ϕ are in the first quadrant 15sinθ+8cosθ.

Identifying 15sinθ+8cosθ with rsin(θ+φ) gives 15sinθ+8cosθ=rcosφsinθ+rsinφcosθ(1) So 15=rcosφ and 8=rsinφ.

Squaring and adding r2cos2φ+r2sin2φ=152+82r2(cos2φ+sin2φ)=225+64r2=289r=17 Also rcosφ=1517cosφ=15cosφ=1517 and rsinφ=817sinφ=8sinφ=817. Thus, from (1), we have 15sinθ+8cosθ=17(1517sinθ+817cosθ)=r(cosφsinθ+sinφcosθ)=rsin(θ+φ), where sinφ=817,cosφ=1517 and r=17.

Express each of the following in the form rsin(θ+ϕ) where terminal ray of θ and ϕ are in the first quadrant 2sinθ5cosθ. Identifying 2sinθ5cosθ with rsin(θ+φ) gives 2sinθ+5cosθ=rcosφsinθ+rsinφcosθ(1) So 2=rcosφ and 5=rsinφ.

Squaring and adding r2cos2φ+r2sin2φ=22+(5)2r2(cos2φ+sin2φ)=4+25r2=29r=29 Also rcosφ=229cosφ=2cosφ=229 and rsinφ=529sinφ=5sinφ=529. Thus, from (1), we have 2sinθ5cosθ=29(229sinθ+529cosθ)=r(cosφsinθ+sinφcosθ)=rsin(θ+φ), where sinφ=529,cosφ=229 and r=29.

Express each of the following in the form rsin(θ+ϕ) where terminal ray of θ and ϕ are in the first quadrant sinθ+cosθ. Identifying sinθ+cosθ with rsin(θ+φ) gives sinθ+cosθ=rcosφsinθ+rsinφcosθ(1) So 1=rcosφ and 1=rsinφ.

Squaring and adding r2cos2φ+r2sin2φ=12+12r2(cos2φ+sin2φ)=1+1r2=2r=2 Also rcosφ=12cosφ=1cosφ=12 and rsinφ=12sinφ=1sinφ=12. Thus, from (1), we have sinθ+cosθ=2(12sinθ+12cosθ)=r(cosφsinθ+sinφcosθ)=rsin(θ+φ), where sinφ=12,cosφ=12 and r=2.