Question 13, Exercise 10.1
Solutions of Question 13 of Exercise 10.1 of Unit 10: Trigonometric Identities of Sum and Difference of Angles. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
Question 13(i)
Express each of the following in the form rsin(θ+ϕ) where terminal ray of θ and ϕ are in the first quadrant 4sinθ+3cosθ. Identifying 4sinθ+3cosθ with rsin(θ+φ) gives 4sinθ+3cosθ=rcosφsinθ+rsinφcosθ−−−(1) So 4=rcosφ and 3=rsinφ.
Squaring and adding r2cos2φ+r2sin2φ=42+32⟹r2(cos2φ+sin2φ)=16+9⟹r2=25⟹r=5 Also rcosφ=4⟹5cosφ=4⟹cosφ=45 and rsinφ=3⟹5sinφ=3⟹sinφ=35. Thus, from (1), we have 4sinθ+3cosθ=5(45sinθ+35cosθ)=r(cosφsinθ+sinφcosθ)=rsin(θ+φ), where sinφ=35,cosφ=45 and r=5.
Question 13(ii)
Express each of the following in the form rsin(θ+ϕ) where terminal ray of θ and ϕ are in the first quadrant 15sinθ+8cosθ.
Solution
Identifying 15sinθ+8cosθ with rsin(θ+φ) gives 15sinθ+8cosθ=rcosφsinθ+rsinφcosθ−−−(1) So 15=rcosφ and 8=rsinφ.
Squaring and adding r2cos2φ+r2sin2φ=152+82⟹r2(cos2φ+sin2φ)=225+64⟹r2=289⟹r=17 Also rcosφ=15⟹17cosφ=15⟹cosφ=1517 and rsinφ=8⟹17sinφ=8⟹sinφ=817. Thus, from (1), we have 15sinθ+8cosθ=17(1517sinθ+817cosθ)=r(cosφsinθ+sinφcosθ)=rsin(θ+φ), where sinφ=817,cosφ=1517 and r=17.
Question 13(iii)
Express each of the following in the form rsin(θ+ϕ) where terminal ray of θ and ϕ are in the first quadrant 2sinθ−5cosθ. Identifying 2sinθ−5cosθ with rsin(θ+φ) gives 2sinθ+−5cosθ=rcosφsinθ+rsinφcosθ−−−(1) So 2=rcosφ and −5=rsinφ.
Squaring and adding r2cos2φ+r2sin2φ=22+(−5)2⟹r2(cos2φ+sin2φ)=4+25⟹r2=29⟹r=√29 Also rcosφ=2⟹√29cosφ=2⟹cosφ=2√29 and rsinφ=−5⟹√29sinφ=−5⟹sinφ=−5√29. Thus, from (1), we have 2sinθ−5cosθ=√29(2√29sinθ+−5√29cosθ)=r(cosφsinθ+sinφcosθ)=rsin(θ+φ), where sinφ=−5√29,cosφ=2√29 and r=√29.
Question 13(iv)
Express each of the following in the form rsin(θ+ϕ) where terminal ray of θ and ϕ are in the first quadrant sinθ+cosθ. Identifying sinθ+cosθ with rsin(θ+φ) gives sinθ+cosθ=rcosφsinθ+rsinφcosθ−−−(1) So 1=rcosφ and 1=rsinφ.
Squaring and adding r2cos2φ+r2sin2φ=12+12⟹r2(cos2φ+sin2φ)=1+1⟹r2=2⟹r=√2 Also rcosφ=1⟹√2cosφ=1⟹cosφ=1√2 and rsinφ=1⟹√2sinφ=1⟹sinφ=1√2. Thus, from (1), we have sinθ+cosθ=√2(1√2sinθ+1√2cosθ)=r(cosφsinθ+sinφcosθ)=rsin(θ+φ), where sinφ=1√2,cosφ=1√2 and r=√2.
Go to