Question 8, Exercise 10.1

Solutions of Question 8 of Exercise 10.1 of Unit 10: Trigonometric Identities of Sum and Difference of Angles. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.

Prove that: tan(π4+θ)=cosθ+sinθcosθsinθ

L.H.S.=tan(π4+θ)=sin(π4+θ)cos(π4+θ)=sinπ4cosθ+cosπ4sinθcosπ4cosθsinπ4sinθ=12cosθ+12sinθ12cosθ12sinθ=12(cosθ+sinθ)12(cosθsinθ)=cosθ+sinθcosθsinθ=R.H.S.

Prove that: tan(π4θ)=1tanθ1+tanθ

L.H.S.=tan(π4θ)=sin(π4θ)cos(π4θ)=sinπ4cosθsinθcosπ4cosπ4cosθ+sinπ4sinθ=12cosθsinθ1212cosθ+12sinθ=cosθsinθcosθ+sinθ=cosθ(1sinθcosθ)cosθ(1+sinθcosθ)=(1tanθ)(1+tanθ)=R.H.S.

Alternative Method

L.H.S.=tan(π4θ)=tanπ4tanθ1+tanπ4tanθ=1tanθ1+1tanθtanπ4=1=(1tanθ)(1+tanθ)=R.H.S.

Prove that: tan(α+β)cot(αβ)=tan2αtan2β1tan2αtan2β

tan(α+β)=tanα+tanβ1tanαtanβcot(αβ)=1+tanαtanβtanαtanβL.H.S.=tan(α+β)cot(αβ)=tanα+tanβ1tanαtanβ1+tanαtanβtanαtanβ=(tanα+tanβ)(tanαtanβ)(1+tanαtanβ)(1tanαtanβ)=tan2αtan2β1tan2αtan2β=R.H.S.

Prove that: 1tanθtanϕ1+tanθtanϕ=cos(θ+ϕ)cos(θϕ)

L.H.S.=1tanθtanϕ1+tanθtanϕ=1sinθcosθsinϕcosϕ1+sinθcosθsinϕcosϕ=cosθcosϕsinθsinϕcosθcosϕcosθcosϕ+sinθsinϕcosθcosϕ=cosθcosϕsinθsinϕcosθcosϕ+sinθsinϕ=cos(θ+ϕ)cos(θϕ)=R.H.S.