Question 6, Exercise 10.2

Solutions of Question 6 of Exercise 10.2 of Unit 10: Trigonometric Identities of Sum and Difference of Angles. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.

Use the half angle identities to evaluate exactly cos15.

Because 15=302, and θ2=302, we can find cos15by using half angle identity as, cos15=cos302=1+cos302=1+322=2+32

Use the half angle identities to evaluate exactly tan67.5.

Because 67.5=1352, the θ2=1352, so we can find tan67.5by using half angle identity as, tan67.5=tan1352=1cos1351+cos135=1(12)1+(12)=1+12112=2+121=2+121×2+12+1=2+1+2221=3+22

Use the half angle identities to evaluate exactly sin112.5.

Because 112.5=2252, the θ2=2252, so we can find sin112.5by using half angle identity as, sin112.5=sin2252=1cos2252=1(12)2=2+122=2+122×22=2+22

Use the half angle identities to evaluate exactly cosπ8.

Because π8=π42, the θ2=π42, so we can find cosπ8by using half angle identity as, cosπ8=cosπ42=1+cosπ42=1+122=2+122=2+22

Use the half angle identities to evaluate exactly tan75.

Because 75=1502, the θ2=1502 lies in first quadrant, so we can find tan75by using half angle identity as, tan75=tan1502=1cos1501+cos150=1(32)1+(32)=1+32132=2+323=7+23

Use the half angle identities to evaluate exactly sin5π12.

Because 5π12=5π62, the θ2=5π62, so we can find sin5π12by using half angle identity as, sin5π12=sin5π62=1cos5π122=1(32)2=1(32)2=1+322=2+32