Question 6, Exercise 10.2
Solutions of Question 6 of Exercise 10.2 of Unit 10: Trigonometric Identities of Sum and Difference of Angles. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
Question 6(i)
Use the half angle identities to evaluate exactly cos15∘.
Solution
Because 15∘=30∘2, and θ2=30∘2, we can find cos15∘by using half angle identity as, cos15∘=cos30∘2=√1+cos30∘2=√1+√322=√2+√32
Question 6(ii)
Use the half angle identities to evaluate exactly tan67.5∘.
Solution
Because 67.5∘=135∘2, the θ2=135∘2, so we can find tan67.5∘by using half angle identity as, tan67.5∘=tan135∘2=√1−cos135∘1+cos135∘=√1−(−1√2)1+(−1√2)=√1+1√21−1√2=√√2+1√2−1=√√2+1√2−1×√2+1√2+1=√2+1+2√22−1=√3+2√2
Question 6(iii)
Use the half angle identities to evaluate exactly sin112.5∘.
Solution
Because 112.5∘=225∘2, the θ2=225∘2, so we can find sin112.5∘by using half angle identity as, sin112.5∘=sin225∘2=√1−cos225∘2=√1−(−1√2)2=√√2+12√2=√√2+12√2×√2√2=√2+√22
Question 6(iv)
Use the half angle identities to evaluate exactly cosπ8.
Solution
Because π8=π42, the θ2=π42, so we can find cosπ8by using half angle identity as, cosπ8=cosπ42=√1+cosπ42=√1+1√22=√√2+12√2=√2+√22
Question 6(v)
Use the half angle identities to evaluate exactly tan75∘.
Solution
Because 75∘=150∘2, the θ2=150∘2 lies in first quadrant, so we can find tan75∘by using half angle identity as, tan75∘=tan150∘2=√1−cos150∘1+cos150∘=√1−(−√32)1+(−√32)=√1+√321−√32=√2+√32−√3=√7+2√3
Question 6(vi)
Use the half angle identities to evaluate exactly sin5π12.
Solution
Because 5π12=5π62, the θ2=5π62, so we can find sin5π12by using half angle identity as, sin5π12=sin5π62=√1−cos5π122=√1−(−√32)2=√1−(−√32)2=√1+√322=√2+√32
Go to