Question 7, Exercise 10.2
Solutions of Question 7 of Exercise 10.2 of Unit 10: Trigonometric Identities of Sum and Difference of Angles. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
Question 7(i)
Prove the identity cos4θ−sin4θ=1sec2θ.
Solution
L.H.S=cos4θ−sin4θ=(cos2θ−sin2θ)(cos2θ+sin2θ)=(cos2θ−sin2θ)(1)=cos2θ(By using double angle identity)=1sec2θ=R.H.S.
Question 7(ii)
Prove the identity tanθ2+cotθ2=2sinθ.
Solution
L.H.S=tanθ2+cotθ2=sinθ2cosθ2+cosθ2sinθ2=sin2θ2+sin2θ2sinθ2cosθ2=1sinθ2cosθ2∵(sin2θ+cos2θ=1)=22sinθ2cosθ2=22sinθ(Byusingdoubleangleidentity)
Question 7(iii)
Prove the identity 1+cos2θ1−cos2θ=cot2θ.
Solution
L.H.S=1+cos2θ1+cos2θ=1+(cos2θ−sin2θ)1−(cos2θ−sin2θ)=1+cos2θ−sin2θ1−cos2θ+sin2θ=1−sin2θ+cos2θ1−cos2θ+sin2θ=2cos2θ2sin2θ=cot2θ=R.H.S.
Question 7(iv)
Prove the identity cosec2θ−cot2θ=tanθ.
Solution
L.H.S.=cosec2θ−cot2θ=1sin2θ−cos2θsin2θ=1−cos2θsin2θ=1−(cos2θ−sin2θ)sin2θ=1−cos2θ+sin2θsin2θ=2sin2θ2sinθcosθ=tanθ=R.H.S.
Question 7(v)
Prove the identity sin3βsinβ−cos3βcosβ=2.
Solution
L.H.S.=sin3βsinβ−cos3βcosβ=sin3βcosβ−cos3βsinβsinβcosβ=sin(3β−β)sinβcosβ=sin2βsinβcosβ=2sin2β2sinβcosβ=2=R.H.S.
Question 7(vi)
Prove the identity sin3θcosθ+cos3θsinθ=2cot2θ.
Solution
L.H.S.=sin3θcosθ+cos3θsinθ=sin3θsinθ+cos3θcosθsinθcosθ=cos(3θ−θ)sinθcosθ=cos2θsinθcosθ=2cos2θ2sinθcosθ=2cot2θ=R.H.S.
Question 7(vii)
Prove the identity cos3θ−sin3θcosθ−sinθ=2+sin2θ2.
Solution
L.H.S.=cos3θ−sin3θcosθ−sinθ=(cosθ−sinθ)(cos2θ+sin2θ+sinθcosθ)cosθ−sinθ=1+sinθcosθ=2(1+sinθcosθ)2=2+sin2θ2=R.H.S.
Question 7(viii)
Prove the identity 2cos3θ1−sinθ=2cosθ+sin2θ.
Solution
L.H.S.=2cos3θ1−sinθ=2cosθ(1−sin2θ)1−sinθ=2cosθ(1−sinθ)(1+sinθ)1−sinθ=2cosθ+2cosθsinθ=2cosθ+2sin2θ=R.H.S.
Question 7(ix)
Prove the identity cot2θ=12(cotθ−1cotθ).
Solution
L.H.S.=cot2θ=cos2θsin2θ=cos2θ−sin2θ2sinθcosθ=12(cos2θsinθcosθ−sin2θsinθcosθ)=12(cotθ−tanθ)=12(cotθ−1cotθ)=R.H.S.
Question 7(x)
Prove the identity sinα+cosαcosα−sinα+sinα−cosαcosα+sinα=2tan2α.
Solution
L.H.S.=sinα+cosαcosα−sinα+sinα−cosαcosα+sinα=(sinα+cosα)2−(sinα−cosα)2(cosα−sinα)(cosα+sinα)=(sin2α+cos2α+2sinαcosα)−(sin2α+cos2α−2sinαcosα)cos2α−sin2α=4sinαcosαcos2α=2tan2α=R.H.S.
Question 7(xi)
Prove the identity tanα2=sinα1+cosα.
Solution
R.H.S.=sinα1+cosα=2sinα2cosα22cos2α2(Byusinghalfangleidentityanddoubleangleidentity)=sinα2cosα2=tanα2=R.H.S.
Question 7(xii)
Prove the identity cosecθ−cotθ1+cosθ=cosecθtan2θ2.
Solution
L.H.S.=cosecθ−cotθ1+cosθ=1sinθ−cosθsinθ1+cosθ=2sin2θ2sinθ2cos2θ2=cosecθtan2θ2=R.H.S.
Question 7(xiii)
Prove the identity cos2θ2=1−cos2θ2−2cosθ.
Solution
R.H.S.=1−cos2θ2−2cosθ=(1−cosθ)(1+cosθ)2(1−cosθ)=(1+cosθ)2=2cos2θ22=cos2θ2=L.H.S.
Question 7(xiv)
Prove the identity 1−tan2α21+tan2α2=cosα.
Solution
L.H.S.=1−tan2α21+tan2α2=1−sin2α2cos2α21+sin2α2cos2α2=cos2α2−sin2α2cos2α2+sin2α2=cosα=R.H.S.
Question 7(xv)
Prove the identity sin2θ−4sin3θcosθ=sin2θcos2θ.
Solution
L.H.S.=sin2θ−4sin3θcosθ=2sinθcosθ−4sin3θcosθ=2sinθcosθ(1−2sin2θ)=sin2θcos2α=R.H.S.
Go to