Question 7, Exercise 10.2

Solutions of Question 7 of Exercise 10.2 of Unit 10: Trigonometric Identities of Sum and Difference of Angles. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.

Prove the identity cos4θsin4θ=1sec2θ.

L.H.S=cos4θsin4θ=(cos2θsin2θ)(cos2θ+sin2θ)=(cos2θsin2θ)(1)=cos2θ(By using double angle identity)=1sec2θ=R.H.S.

Prove the identity tanθ2+cotθ2=2sinθ.

L.H.S=tanθ2+cotθ2=sinθ2cosθ2+cosθ2sinθ2=sin2θ2+sin2θ2sinθ2cosθ2=1sinθ2cosθ2(sin2θ+cos2θ=1)=22sinθ2cosθ2=22sinθ(Byusingdoubleangleidentity)

Prove the identity 1+cos2θ1cos2θ=cot2θ.

L.H.S=1+cos2θ1+cos2θ=1+(cos2θsin2θ)1(cos2θsin2θ)=1+cos2θsin2θ1cos2θ+sin2θ=1sin2θ+cos2θ1cos2θ+sin2θ=2cos2θ2sin2θ=cot2θ=R.H.S.

Prove the identity cosec2θcot2θ=tanθ.

L.H.S.=cosec2θcot2θ=1sin2θcos2θsin2θ=1cos2θsin2θ=1(cos2θsin2θ)sin2θ=1cos2θ+sin2θsin2θ=2sin2θ2sinθcosθ=tanθ=R.H.S.

Prove the identity sin3βsinβcos3βcosβ=2.

L.H.S.=sin3βsinβcos3βcosβ=sin3βcosβcos3βsinβsinβcosβ=sin(3ββ)sinβcosβ=sin2βsinβcosβ=2sin2β2sinβcosβ=2=R.H.S.

Prove the identity sin3θcosθ+cos3θsinθ=2cot2θ.

L.H.S.=sin3θcosθ+cos3θsinθ=sin3θsinθ+cos3θcosθsinθcosθ=cos(3θθ)sinθcosθ=cos2θsinθcosθ=2cos2θ2sinθcosθ=2cot2θ=R.H.S.

Prove the identity cos3θsin3θcosθsinθ=2+sin2θ2.

L.H.S.=cos3θsin3θcosθsinθ=(cosθsinθ)(cos2θ+sin2θ+sinθcosθ)cosθsinθ=1+sinθcosθ=2(1+sinθcosθ)2=2+sin2θ2=R.H.S.

Prove the identity 2cos3θ1sinθ=2cosθ+sin2θ.

L.H.S.=2cos3θ1sinθ=2cosθ(1sin2θ)1sinθ=2cosθ(1sinθ)(1+sinθ)1sinθ=2cosθ+2cosθsinθ=2cosθ+2sin2θ=R.H.S.

Prove the identity cot2θ=12(cotθ1cotθ).

L.H.S.=cot2θ=cos2θsin2θ=cos2θsin2θ2sinθcosθ=12(cos2θsinθcosθsin2θsinθcosθ)=12(cotθtanθ)=12(cotθ1cotθ)=R.H.S.

Prove the identity sinα+cosαcosαsinα+sinαcosαcosα+sinα=2tan2α.

L.H.S.=sinα+cosαcosαsinα+sinαcosαcosα+sinα=(sinα+cosα)2(sinαcosα)2(cosαsinα)(cosα+sinα)=(sin2α+cos2α+2sinαcosα)(sin2α+cos2α2sinαcosα)cos2αsin2α=4sinαcosαcos2α=2tan2α=R.H.S.

Prove the identity tanα2=sinα1+cosα.

R.H.S.=sinα1+cosα=2sinα2cosα22cos2α2(Byusinghalfangleidentityanddoubleangleidentity)=sinα2cosα2=tanα2=R.H.S.

Prove the identity cosecθcotθ1+cosθ=cosecθtan2θ2.

L.H.S.=cosecθcotθ1+cosθ=1sinθcosθsinθ1+cosθ=2sin2θ2sinθ2cos2θ2=cosecθtan2θ2=R.H.S.

Prove the identity cos2θ2=1cos2θ22cosθ.

R.H.S.=1cos2θ22cosθ=(1cosθ)(1+cosθ)2(1cosθ)=(1+cosθ)2=2cos2θ22=cos2θ2=L.H.S.

Prove the identity 1tan2α21+tan2α2=cosα.

L.H.S.=1tan2α21+tan2α2=1sin2α2cos2α21+sin2α2cos2α2=cos2α2sin2α2cos2α2+sin2α2=cosα=R.H.S.

Prove the identity sin2θ4sin3θcosθ=sin2θcos2θ.

L.H.S.=sin2θ4sin3θcosθ=2sinθcosθ4sin3θcosθ=2sinθcosθ(12sin2θ)=sin2θcos2α=R.H.S.