Question 8 and 9, Exercise 10.2
Solutions of Question 8 and 9 of Exercise 10.2 of Unit 10: Trigonometric Identities of Sum and Difference of Angles. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
Question 8
Write cos4θ in term of first power of one or more cosine functions.
Solution
cos4θ=(cos2θ)2=(1+cos2θ2)2=1+2cos2θ+cos22θ4=14[1+2cos2θ+cos22θ]=14[1+2cos2θ+1+cos4θ2]=18[2+4cos2θ+1+cos4θ]=18[3+4cos2θ+cos4θ] ⟹cos4θ=38+12cos2θ+18cos4θ
Question 9(i)
Prove the identity sin4θ=8sinθcos3θ−4sinθcosθ .
Solution
L.H.S.=sin4θ=sin2(2θ)=2sin2θcos2θ=4sinθcosθ(2cos2θ−1)=8sinθcos3θ−4cosθsinθ=R.H.S
Question 9(ii)
Prove the identity cot4θ=1−tan22θ2tan2θ .
Solution
L.H.S.=cot4θ=cos4θsin4θ=cos2(2θ)sin2(2θ)=2cos22θ−12sin2θcos2θ(by using double angle identity)=2cos22θ−(cos22θ+sin22θ)2sin2θcos2θ=cos22θ−sin22θ2sin2θcos2θ=cos22θ(1−tan22θ)2sin2θcos2θ=1−tan22θ2tan2θ=R.H.S.
Question 9(iii)
Prove the identity cot3θ=cot3θ−3cotθ3cot2θ−1 .
Solution
L.H.S.=cot3θ=1tan3θ=1tan(2θ+θ)=1−tan2θtanθtan2θ+tanθ=1−2tanθ1−tan2θtanθ2tanθ1−tan2θ+tanθ=1−tan2θ−2tan2θ1−tan2θ2tanθ+tanθ−tan3θ1−tan2θ=1−tan2θ−2tan2θ2tanθ+tanθ−tan3θ=1−3tan2θ3tanθ−tan3θ=tan3θ(1tan3θ−3tanθ)tan3θ(3tan2θ−1)=cot3θ−3cotθ3cot2θ−1=R.H.S.
Go to