Question 8 and 9, Exercise 10.2

Solutions of Question 8 and 9 of Exercise 10.2 of Unit 10: Trigonometric Identities of Sum and Difference of Angles. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.

Write cos4θ in term of first power of one or more cosine functions.

cos4θ=(cos2θ)2=(1+cos2θ2)2=1+2cos2θ+cos22θ4=14[1+2cos2θ+cos22θ]=14[1+2cos2θ+1+cos4θ2]=18[2+4cos2θ+1+cos4θ]=18[3+4cos2θ+cos4θ] cos4θ=38+12cos2θ+18cos4θ

Prove the identity sin4θ=8sinθcos3θ4sinθcosθ .

L.H.S.=sin4θ=sin2(2θ)=2sin2θcos2θ=4sinθcosθ(2cos2θ1)=8sinθcos3θ4cosθsinθ=R.H.S

Prove the identity cot4θ=1tan22θ2tan2θ .

L.H.S.=cot4θ=cos4θsin4θ=cos2(2θ)sin2(2θ)=2cos22θ12sin2θcos2θ(by using double angle identity)=2cos22θ(cos22θ+sin22θ)2sin2θcos2θ=cos22θsin22θ2sin2θcos2θ=cos22θ(1tan22θ)2sin2θcos2θ=1tan22θ2tan2θ=R.H.S.

Prove the identity cot3θ=cot3θ3cotθ3cot2θ1 .

L.H.S.=cot3θ=1tan3θ=1tan(2θ+θ)=1tan2θtanθtan2θ+tanθ=12tanθ1tan2θtanθ2tanθ1tan2θ+tanθ=1tan2θ2tan2θ1tan2θ2tanθ+tanθtan3θ1tan2θ=1tan2θ2tan2θ2tanθ+tanθtan3θ=13tan2θ3tanθtan3θ=tan3θ(1tan3θ3tanθ)tan3θ(3tan2θ1)=cot3θ3cotθ3cot2θ1=R.H.S.