Question 8 and 9, Exercise 10.2

Solutions of Question 8 and 9 of Exercise 10.2 of Unit 10: Trigonometric Identities of Sum and Difference of Angles. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.

Write cos4θ in term of first power of one or more cosine functions.

cos4θ=(cos2θ)2=(1+cos2θ2)2=1+2cos2θ+cos22θ4=14[1+2cos2θ+cos22θ]=14[1+2cos2θ+1+cos4θ2]=18[2+4cos2θ+1+cos4θ]=18[3+4cos2θ+cos4θ] \implies \bbox[4px,border:2px solid black]{\cos^4 \theta=\dfrac{3}{8}+\dfrac{1}{2}\cos 2\theta +\dfrac{1}{8}\cos 4\theta}

Prove the identity \sin 4\theta =8\sin \theta {{\cos }^{3}}\theta -4\sin \theta \cos \theta .

\begin{align}L.H.S.&=\sin 4\theta \\ &=\sin 2\left( 2\theta \right)\\ &=2\sin 2\theta \cos 2\theta \\ &=4\sin \theta \cos \theta \left( 2{{\cos }^{2}}\theta -1 \right)\\ &=8\sin \theta {{\cos }^{3}}\theta -4\cos \theta \sin \theta \\ & = R.H.S\end{align}

Prove the identity \cot 4\theta =\dfrac{1-{{\tan }^{2}}2\theta }{2\tan 2\theta } .

\begin{align}L.H.S.&=\cot 4\theta =\dfrac{\cos 4\theta }{\sin 4\theta }\\ &=\dfrac{\cos 2\left( 2\theta \right)}{\sin 2\left( 2\theta \right)}\\ &=\dfrac{2{{\cos }^{2}}2\theta -1}{2\sin 2\theta \cos 2\theta}\quad\text{(by using double angle identity)}\\ &=\dfrac{2{{\cos }^{2}}2\theta -\left( {{\cos }^{2}}2\theta +{{\sin }^{2}}2\theta \right)}{2\sin 2\theta \cos 2\theta }\\ &=\dfrac{{{\cos }^{2}}2\theta -{{\sin }^{2}}2\theta }{2\sin 2\theta \cos 2\theta }\\ &=\dfrac{{{\cos }^{2}}2\theta \left( 1-{{\tan }^{2}}2\theta \right)}{2\sin 2\theta \cos 2\theta }\\ &=\dfrac{1-{{\tan }^{2}}2\theta }{2\tan 2\theta }=R.H.S.\end{align}

Prove the identity \cot 3\theta =\dfrac{\cot^3\theta-3\cot\theta}{3\cot^2\theta -1} .

\begin{align}L.H.S.&=\cot 3\theta =\dfrac{1}{\tan3\theta}\\ &=\dfrac{1}{\tan( 2\theta +\theta)}\\ &=\dfrac{1-\tan 2\theta \tan \theta }{\tan 2\theta +\tan \theta }\\ &=\dfrac{1-\dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta }\tan \theta }{\dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta }+\tan \theta }\\ &= \dfrac{{\dfrac{{1 - {{\tan }^2}\theta - 2{{\tan }^2}\theta }}{{1 - {{\tan }^2}\theta }}}}{{\dfrac{{2\tan \theta + \tan \theta - {{\tan }^3}\theta }}{{1 - {{\tan }^2}\theta }}}} \\ &=\dfrac{1-{{\tan }^{2}}\theta -2{{\tan }^{2}}\theta }{2\tan \theta +\tan \theta -{{\tan }^{3}}\theta }\\ &=\dfrac{1-3{{\tan }^{2}}\theta }{3\tan \theta -{{\tan }^{3}}\theta } \\ &= \dfrac{{{{\tan }^3}\theta \left( {\frac{1}{{{{\tan }^3}\theta }} - \frac{3}{{\tan \theta }}} \right)}}{{{{\tan }^3}\theta \left( {\frac{3}{{{{\tan }^2}\theta }} - 1} \right)}}\\ &=\dfrac{\cot^3\theta -3\cot\theta}{3\cot^2\theta -1}=R.H.S.\end{align}