Question 1, Exercise 10.3
Solutions of Question 1 of Exercise 10.3 of Unit 10: Trigonometric Identities of Sum and Difference of Angles. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan. There are four parts in Question 1.
Question 1(i)
Express the product as sum or difference 2sin6xsinx.
Solution
We have an identity: −2sinαsinβ=cos(α+β)−cos(α−β). Put α=6x and β=x −2sin6xsinx=cos(6x+x)−cos(6x−x)=cos7x−cosx2sin6xsinx=cos5θ−cos7θ
Question 1(ii)
Express the product as sum or difference sin55∘cos123∘.
Solution
We have an identity: 2sinαcosβ=sin(α+β)+sin(α−β) Put α=55∘ and β=123∘ \begin{align}2\sin {{55}^{\circ }}\cos {{123}^{\circ }}&=\sin ({{55}^{\circ }}+{{123}^{\circ }})+\sin ({{55}^{\circ }}-{{123}^{\circ }})\\ &=\sin {{178}^{\circ }}+\sin(-68^\circ)\\ &=\sin {{178}^{\circ }}-\sin {{68}^{\circ }}\\ \implies \sin {{55}^{\circ }}\cos {{123}^{\circ }}&=\dfrac{1}{2} \left[ \sin {{178}^{\circ }}-\sin {{68}^{\circ }} \right]. \end{align}
Question 1(iii)
Express the product as sum or difference: sinA+B2cosA−B2.
Solution
We have an identity: 2sinαcosβ=sin(α+β)+sin(α−β) Put α=A+B2 and β=A−B2 2sinA+B2cosA−B2=sin(A+B2+A−B2)+sin(A+B2−A−B2)=sinA+sinB. $$\implies \sin \dfrac{A+B}{2}\cos \dfrac{A-B}{2}=\dfrac{1}{2}\left( \sin A+\sin B \right).$$
Question 1(iv)
Express the product as sum or difference: cosP+Q2cosP−Q2.
Solution
We have an identity: 2cosαcosβ=cos(α+β)+cos(α−β) Put α=P+Q2 and β=P−Q2 2cosP+Q2cosP−Q2=cos(P+Q2+P−Q2)−cos(P+Q2−P−Q2)=cosP−cosQ $$\implies\sin \dfrac{P+Q}{2}\cos \dfrac{P-Q}{2}=\dfrac{1}{2}\left( \cos P-\cos Q \right)$$
Go to