Question 3, Exercise 10.3
Solutions of Question 3 of Exercise 10.3 of Unit 10: Trigonometric Identities of Sum and Difference of Angles. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
Question 3(i)
Prove that cos75∘+cos15∘sin75∘−sin15∘=√3.
Solution
We have identities: cosα+cosβ=2cos(α+β2)cos(α−β2) and sinα−sinβ=2cos(α+β2)sin(α−β2). Now L.H.S.=cos75∘+cos15∘sin75∘−sin15∘=2cos(75∘+15∘2)cos(75∘−15∘2)2cos(75∘+15∘2)sin(75∘−15∘2)=cos30∘sin30∘=√3212=√3=R.H.S.
Question 3(ii)
Prove that sin135∘−cos120∘sin135∘+cos120∘=3+2√2.
Solution
L.H.S.=sin135∘−cos120∘sin135∘+cos120∘=1√2−(−12)1√2+(−12)=2+√22−√2=2+√22−√2×2+√22+√2=6+4√24−2=3+2√2=R.H.S.
Go to