Question 1, Review Exercise 10
Solutions of Question 1 of Review Exercise 10 of Unit 10: Trigonometric Identities of Sum and Difference of Angles. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
Question 1
Chose the correct option.
i. cos50∘50′cos9∘10′−sin50∘50′sin9∘10′=
- (a) 0
- (b) 12
- (c) 1
- (d) √32
(B): 12
ii. If tan15∘=2−√3, then the value of cot275∘ is
- (a) 7+√3
- (b) 7−2√3
- (c) 7−4√3
- (d) 7+4√3
(B): 12
iii. If tan(α+β)=12, and tanα=13 then tanβ=
- (a) 16
- (b) 17
- (c) 1
- (d) 76
(B): 12
iv. sinθcos(90∘−θ)+cosθsin(90∘−θ)=
- (a) −1
- (b) 2
- (c) 0
- (d) 1
(B): 12
v. Simplified expression of (secθ+tanθ)(1−sinθ) is
- (a) sin2θ
- (b) cos2θ
- (c) tan2θ
- (d) cosθ
(B): 12
vi. sin(x−π2)= is
- (a) sinx
- (b) −sinx
- (c) cosx
- (d) −cosx
(B): 12
vii. A point is in Quadrant-III and on the unit circle. If its x-coordinate is −45, what is the y-coordinate of the point?
- (a) 35
- (b) −35
- (c) −25
- (d) 53
(B): 12
viii. Which of the following is an identity?
- (a) sin(a)cos(a)=(12)(sin2a)
- (b) sina+cosa=1
- (c) sin(−a)=sina
- (d) tana=cosasina
(a): sin(a)cos(a)=(12)(sin2a)
Go to