Question 1, Review Exercise 10

Solutions of Question 1 of Review Exercise 10 of Unit 10: Trigonometric Identities of Sum and Difference of Angles. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.

Chose the correct option.

i. cos5050cos910sin5050sin910=

  • (a) 0
  • (b) 12
  • (c) 1
  • (d) 32
    See Answer
    (B): 12

ii. If tan15=23, then the value of cot275 is

  • (a) 7+3
  • (b) 723
  • (c) 743
  • (d) 7+43
    See Answer
    (B): 12

iii. If tan(α+β)=12, and tanα=13 then tanβ=

  • (a) 16
  • (b) 17
  • (c) 1
  • (d) 76
    See Answer
    (B): 12

iv. sinθcos(90θ)+cosθsin(90θ)=

  • (a) 1
  • (b) 2
  • (c) 0
  • (d) 1
    See Answer
    (B): 12

v. Simplified expression of (secθ+tanθ)(1sinθ) is

  • (a) sin2θ
  • (b) cos2θ
  • (c) tan2θ
  • (d) cosθ
    See Answer
    (B): 12

vi. sin(xπ2)= is

  • (a) sinx
  • (b) sinx
  • (c) cosx
  • (d) cosx
    See Answer
    (B): 12

vii. A point is in Quadrant-III and on the unit circle. If its x-coordinate is 45, what is the y-coordinate of the point?

  • (a) 35
  • (b) 35
  • (c) 25
  • (d) 53
    See Answer
    (B): 12

viii. Which of the following is an identity?

  • (a) sin(a)cos(a)=(12)(sin2a)
  • (b) sina+cosa=1
  • (c) sin(a)=sina
  • (d) tana=cosasina
    See Answer
    (a): sin(a)cos(a)=(12)(sin2a)

Go to