Question 7, Exercise 1.1

Solutions of Question 7 of Exercise 1.1 of Unit 01: Complex Numbers. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.

Find the magnitude of the 11+12i.

Solution.

Suppose z=11+12i Then |z|=(11)2+(12)2=265 Hence |11+12i|=265.

GOOD

Find the magnitude of the (2+3i)(2+6i).

Solution. Suppose z=(2+3i)(2+6i), then z=2+3i26i=3i Now |z|=02+(3)2=9=3. Hence |(2+3i)(2+6i)|=3.

GOOD

Find the magnitude of the (2i)(6+3i).

Solution. Suppose z=(2i)(6+3i), then |z|=|(2i)(6+3i)|=|(2i)||(6+3i)|=22+1262+32=545=535=15. Hence |(2i)(6+3i)|=15.

GOOD

Find the magnitude of the 32i2+i.

Solution.

Suppose z=32i2+i, then |z|=|32i2+i|=|32i||2+i|=32+(2)222+12=135=135. Hence |32i2+i|=135.

GOOD

Find the magnitude of the (38)(3+8).

Solution. Suppose z=(38)(3+8)=(38i)(3+8i)=(3)2(8i)2=3+8=11. Then |z|=|11|=11. Hence |(38)(3+8)|=11.

GOOD