Question 9, Exercise 1.2
Solutions of Question 9 of Exercise 1.2 of Unit 01: Complex Numbers. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 9(i)
Find real and imaginary parts of (2+4i)−1.
Solution.
Suppose z=2+4i.
Re(2+4i)−1=Re(z−1)=Re(z)|z|2=222+42=220=110.
Im(2+4i)−1=Im(z−1)=−Im(z)|z|2=−422+42=−420=15.
Question 9(ii)
Find real and imaginary parts of (3−√−4)−2.
Solution.
Suppose z=3−√−4=3−2i.
We will use the following formulas:
Re(z−2)=(Re(z))2−(Im(z))2|z|4,
Im(z−2)=−2Re(z)Im(z)|z|4.
First, note Re(z)=3, Im(z)=−2 and
|z|=√32+(−2)2=√13.
Then
|z|4=169.
Using in above formulas
Re((3−2i)−2)=(3)2−(−2)2(√13)4=9−4169=5169.
Im((3−2i)−2)=−2⋅3⋅(−2)(√13)4=12169.
Therefore, the real part is 5169 and the imaginary part is 12169.
Question 9(iii)
Find real and imaginary parts of (7+2i3−i)−1.
Solution.
We use the following formulas:
Re((x1+iy1x2+iy2)−1)=x1x2+y1y2x21+y21, Im((x1+iy1x2+iy2)−1)=x1y2−x2y1x21+y21.
For z1=7+2i and z2=3−i, we have:
x1=7,y1=2,x2=3,y2=−1.
Using in above formulas:
Re((7+2i3−i)−1)=7⋅3+2⋅(−1)72+22=21−249+4=1953.
Im((7+2i3−i)−1)=7⋅(−1)−3⋅272+22=−7−649+4=−1353.
Therefore, the real part is 1953 and the imaginary part is −1353.
Question 9(iv)
Find real and imaginary parts of (4+2i2+5i)−2.
Solution.
We will use the following formulas:
Re((x1+iy1x2+iy2)−2)=(x22−y22)(x21−y21)+4x2x1y2y1(x21+y21)2
Im((x1+iy1x2+iy2)−2)=−2[x1y1(x22−y22)−x2y2(x21−y21)](x21+y21)2.
Given z1=4+2i and z2=2+5i, we have:
x1=4,y1=2,x2=2,y2=5.
First, we need to compute x21+y21:
x21+y21=42+22=20.
Next, compute x22−y22:
x22−y22=22−52=−21.
Then, compute x21−y21:
x21−y21=42−22=12.
Now, compute 4x2x1y2y1:
4x2x1y2y1=4⋅2⋅4⋅5⋅2=320.
Now, we can compute the real part:
Re((4+2i2+5i)−2)=(x22−y22)(x21−y21)+4x2x1y2y1(x21+y21)2=(−21)⋅12+320202=−252+320400=17100.
Next, we compute the imaginary part:
Im((4+2i2+5i)−2)=−2[x1y1(x22−y22)−x2y2(x21−y21)](x21+y21)2 First, compute x1y1(x22−y22): x1y1(x22−y22)=4⋅2⋅(−21)=−168.
Next, compute x2y2(x21−y21):
x2y2(x21−y21)=2⋅5⋅12=120.
Thus, Im((4+2i2+5i)−2)=−2[−168−120]400=−2⋅(−288)400=3625 So, the real part of (4+2i2+5i)−2 is 17100 and the imaginary part is 3625.
Question 9(v)
Find real and imaginary parts of (5−4i5+4i)2.
Solution.
We will use the following formulas:
Re((x1+iy1x2+iy2)2)=(x21−y21)(x22−y22)+4x1x2y1y2(x22+y22)2.
Im((x1+iy1x2+iy2)2)=2[x1y1(x22−y22)−x2y2(x21−y21)](x22+y22)2.
For z1=5−4i and z2=5+4i, we have:
x1=5,y1=−4,x2=5,y2=4.
First, calculate: x22+y22=52+42=25+16=41 Now, calculate the real part:
Re((5−4i5+4i)2)=(52−(−4)2)(52−42)+4⋅5⋅5⋅(−4)⋅4(52+42)2=(25−16)(25−16)+4⋅5⋅5⋅(−4)⋅4412=9⋅9+4⋅5⋅5⋅(−4)⋅41681=−15191681 Next, we calculate the imaginary part: Im((5−4i5+4i)2)=2[5⋅(−4)(52−42)−5⋅4(52−(−4)2)](52+42)2=2[5⋅(−4)(25−16)−5⋅4(25−16)]412=2[5⋅(−4)⋅9−5⋅4⋅9]1681=2[−20⋅9−20⋅9]1681=−7201681 Therefore, the real part of (5−4i5+4i)2 is −15191681 and the imaginary part is −7201681.
Question 9(vi)
Find real and imaginary parts of 3−7i2+5i.
Solution.
We will use the given formulas:
Re(x1+iy1x2+iy2)=x1x2+y1y2x22+y22
Im(x1+iy1x2+iy2)=x2y1−x1y2x22+y22.
Given z1=3−7i and z2=2+5i, we have: x1=3,y1=−7,x2=2,y2=5.
First, compute x22+y22:
x22+y22=22+52=29
Next, compute x1x2+y1y2: x1x2+y1y2=3⋅2+(−7)⋅5=−29
Then, compute x2y1−x1y2:
x2y1−x1y2=2⋅(−7)−3⋅5=−29
Now, we can compute the real parts:
Re(3−7i2+5i)=x1x2+y1y2x22+y22=−2929=−1.
Now, we can compute the imaginary parts: Im(3−7i2+5i)=x2y1−x1y2x22+y22=−2929=−1.
So, the real part of 3−7i2+5i is −1 and the imaginary part is −1.
Go to