Question 4, Exercise 1.3

Solutions of Question 4 of Exercise 1.3 of Unit 01: Complex Numbers. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.

Solve the simultaneous system of linear equation with complex coefficients: (1i)z+(1+i)ω=3;2z(2+5i)ω=2+3i.

Solution.

(1i)z+(1+i)ω=3(1)2z(2+5i)ω=2+3i(2) Multiplying Eq. (1) by 2: (22i)z+(2+2i)ω=6(3) Multiplying Eq. (2) by (1i): 2(1i)z(1i)(2+5i)ω=(1i)(2+3i)(22i)z(2+5+5i2i)ω=2+3+3i2i(22i)z(7+3i)ω=5+i(4) (3)(4) implies (9+5i)ω=1i ω=1i9+5i=1i9+5i×95i95i=955i9i81+25=414i106=253753i Put value of ω in (1), we have (1i)z+(1+i)(253753i)=3(1i)z+253+753753i+253i=3(1i)z+953553i=3(1i)z=3953553i(1i)z=15053553i z=15053553i1i=1531505i1i=1531505i1i×1+i1+i=153150+5+150i5i1+1=153155+145i2=155106+145106i Thus, we have z=155106+145106i,ω=253753i. GOOD

Solve the simultaneous system of linear equation with complex coefficients: 2iz+(32i)ω=1+i;(12i)z+(3+2i)ω=5+6i.

Solution.

2iz+(32i)ω=1+i(1)(12i)z+(3+2i)ω=5+6i(2)

Multiplying (1) by (12i), we get:

(12i)(2iz)+(12i)(32i)ω=(12i)(1+i)(2i+4)z+(342i6i)ω=1+2+i2i(4+2i)z+(18i)ω=3i(3)

Multiplying equation (2) by 2i, we get:

2i(12i)z+2i(3+2i)ω=2i(5+6i)(2i+4)z+(6i4)ω=10i12(4+2i)z+(4+6i)ω=12+10i(4) (3)(4),we have (18i+46i)ω=3i+1210i(314i)ω=1511i ω=1511i314i=1511i314i3+14i3+14i=45+154+210i33i9+196=199+177i205ω=199205+177205i. Now, substituting ω back into equation (1) to find z: 2iz+(32i)(199205+177205i)=1+i2iz+597205+354205398205i+531205i=1+i2iz+951205+133205i=1+i2iz=1+i951205133205i2iz=746205+72205i Dividing by 2i z=373205i+36i205i=373205i+362051i=i=36205+373205i Thus, we have: z=36205+373205i;ω=199205+177205i. GOOD

Solve the simultaneous system of linear equation with complex coefficients: 3iz(6+2i)ω=5;i2z+(3412i)ω=(12+2i).

Solution. Given: 3iz(6+2i)ω=53iz(6+2i)ω=5(1)1i=i.i2z+(3412i)ω=(12+2i)(2) Multiply (1) by 2 and (2) by 12, we have 6iz(12+4i)ω=10(3) 6iz+(96i)ω=6+24i(4) (3)+(4), we have (310i)ω=16+24iω=16+24i310i=16+24i310i×3+10i3+10i=288+88i109ω=288109+88109i Put vale of ω in (1), we have 3iz(6+2i)(288109+88109i)=53iz(1728109176109+528109i576109i)=53iz(190410948109i)=53iz=5190410948109i3iz=135910948109i3iz=1359109+48109i Dividing by 3i, we get z=453109i+16i109iz=16109453109i1i=i.

Thus, we have: z=16109453109i;ω=288109+88109i GOOD

Solve the simultaneous system of linear equation with complex coefficients: 11iz+(1+i)ω=3;2iz(23i)ω=2+6i.

Solution.

Given 11iz+(1+i)ω=3(1)2iz(23i)ω=2+6i(2) Multiply (1) by 2(1i), we have 2z+2(1+i)(1i)ω=6(1i)2z+4ω=66i(3) Multiply i by (2), we have 2z(3+2i)ω=6+2i(4) (3)(4) we have, 4ω+(3+2i)ω=4i(7+2i)ω=128i ω=128i7+2i=128i7+2i×72i72i=841624i56i249+4=6880i53=68538053i Putting value of ω in (3), we get 2z+4(68538053i)=66i2z=66i27253+32053i2z=4653+253iz=2353+153i Hence, we have z=2353+153i;ω=68538053i. GOOD