Question 4, Exercise 1.3
Solutions of Question 4 of Exercise 1.3 of Unit 01: Complex Numbers. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 4(i)
Solve the simultaneous system of linear equation with complex coefficients: (1−i)z+(1+i)ω=3;2z−(2+5i)ω=2+3i.
Solution.
(1−i)z+(1+i)ω=3⋯(1)2z−(2+5i)ω=2+3i⋯(2)
Multiplying Eq. (1) by 2:
(2−2i)z+(2+2i)ω=6⋯(3)
Multiplying Eq. (2) by (1−i):
2(1−i)z−(1−i)(2+5i)ω=(1−i)(2+3i)⟹(2−2i)z−(2+5+5i−2i)ω=2+3+3i−2i⟹(2−2i)z−(7+3i)ω=5+i⋯(4)
(3)−(4) implies
(9+5i)ω=1−i
⟹ω=1−i9+5i=1−i9+5i×9−5i9−5i=9−5−5i−9i81+25=4−14i106=253−753i
Put value of ω in (1), we have
(1−i)z+(1+i)(253−753i)=3⟹(1−i)z+253+753−753i+253i=3⟹(1−i)z+953−553i=3⟹(1−i)z=3−953−553i⟹(1−i)z=15053−553i
⟹z=15053−553i1−i=153150−5i1−i=153150−5i1−i×1+i1+i=153150+5+150i−5i1+1=153155+145i2=155106+145106i
Thus, we have
z=155106+145106i,ω=253−753i.
Question 4(ii)
Solve the simultaneous system of linear equation with complex coefficients: 2iz+(3−2i)ω=1+i;(1−2i)z+(3+2i)ω=5+6i.
Solution.
2iz+(3−2i)ω=1+i⋯(1)(1−2i)z+(3+2i)ω=5+6i⋯(2)
Multiplying (1) by (1−2i), we get:
(1−2i)(2iz)+(1−2i)(3−2i)ω=(1−2i)(1+i)⟹(2i+4)z+(3−4−2i−6i)ω=1+2+i−2i⟹(4+2i)z+(−1−8i)ω=3−i⋯(3)
Multiplying equation (2) by 2i, we get:
2i(1−2i)z+2i(3+2i)ω=2i(5+6i)⟹(2i+4)z+(6i−4)ω=10i−12⟹(4+2i)z+(−4+6i)ω=−12+10i⋯(4)
(3)−(4),we have
(−1−8i+4−6i)ω=3−i+12−10i⟹(3−14i)ω=15−11i
⟹ω=15−11i3−14i=15−11i3−14i⋅3+14i3+14i=45+154+210i−33i9+196=199+177i205⟹ω=199205+177205i.
Now, substituting ω back into equation (1) to find z:
2iz+(3−2i)(199205+177205i)=1+i⟹2iz+597205+354205−398205i+531205i=1+i⟹2iz+951205+133205i=1+i⟹2iz=1+i−951205−133205i⟹2iz=−746205+72205i
Dividing by 2i
z=−373205i+36i205i=373205i+36205∵1i=−i=36205+373205i
Thus, we have:
z=36205+373205i;ω=199205+177205i.
Question 4(iii)
Solve the simultaneous system of linear equation with complex coefficients: 3iz−(6+2i)ω=5;i2z+(34−12i)ω=(12+2i).
Solution. Given: 3iz−(6+2i)ω=5−3iz−(6+2i)ω=5⋯(1)∵1i=−i.i2z+(34−12i)ω=(12+2i)⋯(2) Multiply (1) by 2 and (2) by 12, we have −6iz−(12+4i)ω=10⋯(3) 6iz+(9−6i)ω=6+24i⋯(4) (3)+(4), we have (−3−10i)ω=16+24i⟹ω=16+24i−3−10i=16+24i−3−10i×−3+10i−3+10i=−288+88i109⟹ω=−288109+88109i Put vale of ω in (1), we have −3iz−(6+2i)(−288109+88109i)=5⟹−3iz−(−1728109−176109+528109i−576109i)=5⟹−3iz−(−1904109−48109i)=5⟹−3iz=5−1904109−48109i⟹−3iz=−1359109−48109i⟹3iz=1359109+48109i Dividing by 3i, we get z=453109i+16i109i⟹z=16109−453109i∵1i=−i.
Thus, we have:
z=16109−453109i;ω=−288109+88109i
Question 4(iv)
Solve the simultaneous system of linear equation with complex coefficients: 11−iz+(1+i)ω=3;2iz−(2−3i)ω=2+6i.
Solution.
Given
11−iz+(1+i)ω=3⋯(1)2iz−(2−3i)ω=2+6i⋯(2)
Multiply (1) by 2(1−i), we have
2z+2(1+i)(1−i)ω=6(1−i)⟹2z+4ω=6−6i⋯(3)
Multiply i by (2), we have
2z−(3+2i)ω=−6+2i⋯(4)
(3)−(4) we have,
4ω+(3+2i)ω=−4i⟹(7+2i)ω=12−8i
⟹ω=12−8i7+2i=12−8i7+2i×7−2i7−2i=84−16−24i−56i249+4=68−80i53=6853−8053i
Putting value of ω in (3), we get
2z+4(6853−8053i)=6−6i⟹2z=6−6i−27253+32053i⟹2z=4653+253i⟹z=2353+153i
Hence, we have z=2353+153i;ω=6853−8053i.
Go to