Question 1, Exercise 1.4
Solutions of Question 1 of Exercise 1.4 of Unit 01: Complex Numbers. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 1(i)
Write a complex number 2+i2√3 in polar form.
Solution.
Let z=x+iy=2+i2√3. We have r=√x2+y2=√22+(2√3)2=√4+12=√16=4. and α=tan−1|yx|=tan−1|2√32|=tan−1(√3)=π3.
Since the complex number 2+i2√3 lies in the first quadrant, the principal value of the argument θ is: θ=α=π3.
Hence
2+i2√3=4(cosπ3+isinπ3).
Question 1(ii)
Write the following complex number 3−i√3 in polar form.
Solution.
Let z=x+iy=3−i√3 r=√x2+y2=√32+(−√3)2=√9+3=√12=2√3.
Next, α=tan−1|yx|=tan−1|−√33|=tan−1(√33)=tan−1(1√3)=π6.
Since the complex number 3−i√3 lies in the fourth quadrant, the principal value of the argument θ is: θ=−α=−π6.
Hence 3−i√3=2√3(cos(−π6)+isin(−π6))=2√3(cos(π6)−isin(π6)).
Question 1(iii)
Write the following complex number −2−i2 in polar form.
Solution.
Let z=x+iy=−2−2i r=√x2+y2=√(−2)2+(−2)2=√4+4=√8=2√2.
Next
α=tan−1|yx|=tan−1|−2−2|=tan−1(1)=π4.
Since the complex number −2−i2 lies in the third quadrant, the principal value of the argument θ is:
θ=π+α=π+π4=5π4.
Hence
−2−i2=2√2(cos5π4+isin5π4).
Question 1(iv)
Write the following complex number i−1cosπ3+isinπ3 in polar form.
Solution.
Let z=x+iy=i−1=−1+i. Then r=√x2+y2=√(−1)2+(1)2=√1+1=√2. Next, α=tan−1|yx|=tan−1|1−1|=tan−1(1)=π4.
Since the complex number i−1 lies in the second quadrant, the principal value of the argument θ is: θ=π−α=π−π4=3π4.
Therefore, the polar form of the complex number i−1 is:
i−1=√2(cos3π4+isin3π4).
Now
i−1cosπ3+isinπ3=√2(cos3π4+isin3π4)cosπ3+isinπ3=√2(cos(3π4−π3)+isin(3π4−π3))=√2(cos5π12+isin5π12).
Go to