Question 1, Exercise 1.4

Solutions of Question 1 of Exercise 1.4 of Unit 01: Complex Numbers. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.

Write a complex number 2+i23 in polar form.

Solution.

Let z=x+iy=2+i23. We have r=x2+y2=22+(23)2=4+12=16=4. and α=tan1|yx|=tan1|232|=tan1(3)=π3.

Since the complex number 2+i23 lies in the first quadrant, the principal value of the argument θ is: θ=α=π3.

Hence 2+i23=4(cosπ3+isinπ3). GOOD

Write the following complex number 3i3 in polar form.

Solution.

Let z=x+iy=3i3 r=x2+y2=32+(3)2=9+3=12=23.

Next, α=tan1|yx|=tan1|33|=tan1(33)=tan1(13)=π6.

Since the complex number 3i3 lies in the fourth quadrant, the principal value of the argument θ is: θ=α=π6.

Hence 3i3=23(cos(π6)+isin(π6))=23(cos(π6)isin(π6)).

Write the following complex number 2i2 in polar form.

Solution.

Let z=x+iy=22i r=x2+y2=(2)2+(2)2=4+4=8=22.

Next α=tan1|yx|=tan1|22|=tan1(1)=π4. Since the complex number 2i2 lies in the third quadrant, the principal value of the argument θ is: θ=π+α=π+π4=5π4. Hence 2i2=22(cos5π4+isin5π4). GOOD

Write the following complex number i1cosπ3+isinπ3 in polar form.

Solution.

Let z=x+iy=i1=1+i. Then r=x2+y2=(1)2+(1)2=1+1=2. Next, α=tan1|yx|=tan1|11|=tan1(1)=π4.

Since the complex number i1 lies in the second quadrant, the principal value of the argument θ is: θ=πα=ππ4=3π4.

Therefore, the polar form of the complex number i1 is: i1=2(cos3π4+isin3π4). Now i1cosπ3+isinπ3=2(cos3π4+isin3π4)cosπ3+isinπ3=2(cos(3π4π3)+isin(3π4π3))=2(cos5π12+isin5π12). GOOD