Question 2, Exercise 1.4

Solutions of Question 2 of Exercise 1.4 of Unit 01: Complex Numbers. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.

Write the complex number (cosπ6+isinπ6)(cosπ3+isinπ3) in rectangular form.

Solution.

Let z1=cosπ6+isinπ6=eiπ6 and z2=cosπ3+isinπ3=eiπ3. Then z1z2=eiπ6eiπ3=ei(π6+π3)=eiπ2=cosπ2+isinπ2=0+i(1)=i. Hence, we proved (cosπ6+isinπ6)(cosπ3+isinπ3)=i.

Alternative Method:

(cosπ6+isinπ6)(cosπ3+isinπ3)=(cosπ6cosπ3sinπ6sinπ3)+i(sinπ6cosπ3+cosπ6sinπ3)=(32121232)+i(1212+3232)=(3434)+i(14+34)=0+i1=i Which is rectangular form.

Write the complex number cosπ6isinπ62(cosπ3+isinπ3) in rectangular form.

Solution.

cosπ6isinπ62(cosπ3+isinπ3)=cos(π6)+isin(π6)2(cosπ3+isinπ3)=12[cos(π6π3)+isin(π6π3)]=12[cos(3π6)+isin(3π6)]=12[cos(π2)+isin(π2)]=12[0i(1)]=12i Which is rectangular form. GOOD