Question 2, Exercise 1.4
Solutions of Question 2 of Exercise 1.4 of Unit 01: Complex Numbers. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 2(i)
Write the complex number (cosπ6+isinπ6)(cosπ3+isinπ3) in rectangular form.
Solution.
Let z1=cosπ6+isinπ6=eiπ6 and z2=cosπ3+isinπ3=eiπ3. Then z1z2=eiπ6⋅eiπ3=ei(π6+π3)=eiπ2=cosπ2+isinπ2=0+i(1)=i. Hence, we proved (cosπ6+isinπ6)(cosπ3+isinπ3)=i.
Alternative Method:
(cosπ6+isinπ6)(cosπ3+isinπ3)=(cosπ6cosπ3−sinπ6sinπ3)+i(sinπ6cosπ3+cosπ6sinπ3)=(√32⋅12−12⋅√32)+i(12⋅12+√32⋅√32)=(√34−√34)+i(14+34)=0+i⋅1=i Which is rectangular form.
Question 2(ii)
Write the complex number cosπ6−isinπ62(cosπ3+isinπ3) in rectangular form.
Solution.
cosπ6−isinπ62(cosπ3+isinπ3)=cos(−π6)+isin(−π6)2(cosπ3+isinπ3)=12[cos(−π6−π3)+isin(−π6−π3)]=12[cos(−3π6)+isin(−3π6)]=12[cos(−π2)+isin(−π2)]=12[0−i(1)]=−12i
Which is rectangular form.
Go to