Question 3, Exercise 1.4
Solutions of Question 3 of Exercise 1.4 of Unit 01: Complex Numbers. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 3(i)
If (x1+iy1)(x2+iy2)(x3+iy3)…(xn+iyn)=a+ib, show that:
(i) (x21+y21)(x22+y22)(x23+y23)…(x2n+y2n)=a2+b2
(ii) ∑nr=1tan−1(yrxr)=tan−1(ba)+2kπ,k∈Z
Solution.
Let zr=xr+iyr, r=1,2,...,n and z=a+ib. Then
|zr|=√x2r+y2rand|z|=√a2+b2.θk=arg(zk)=tan−1(yrxr)andθ=tan−1(ba). We can write these complex numbers in polar form as: zr=|zr|eiθkandz=|z|eiθ−−(1) Now we have given (x1+iy1)(x2+iy2)(x3+iy3)…(xn+iyn)=a+ib⟹z1⋅z2⋅z3⋯zn=z. By using (1), we have |z1|eiθ1⋅|z2|eiθ2⋅|z3|eiθ3⋯|zn|eiθn=|z|eiθ⟹(|z1|⋅|z2|⋅|z3|⋯|zn|)ei(θ1+θ2+θ3+…+θn)=|z|eiθ. This gives |z1|⋅|z2|⋅|z3|⋯|zn|=|z|−−(2) and θ1+θ2+θ3+…+θn=θ+2kπ,where k∈Z.−−(3) Taking square on both sides of (2), we get |z1|2⋅|z2|2⋅|z3|2⋯|zn|2=|z|2 implies (x21+y21)(x22+y22)(x23+y23)…(x2n+y2n)=a2+b2−−(4) Now from (3), we have n∑r=1θr=θ+2kπ,where k∈Z, implies n∑r=1tan−1(yrxr)=tan−1(ba)+2kπ,k∈Z.−−(5) (4) and (5) are our required results.
Alternative Method for Part (i)
We have given (x1+iy1)(x2+iy2)(x3+iy3)…(xn+iyn)=a+ib⟹|(x1+iy1)(x2+iy2)(x3+iy3)…(xn+iyn)|=|a+ib|⟹|x1+iy1|⋅|x2+iy2|⋅|x3+iy3|…|xn+iyn|=|a+ib| Taking square on both side, we have |x1+iy1|2⋅|x2+iy2|2⋅|x3+iy3|2…|xn+iyn|2=|a+ib|2⟹(x21+y21)(x22+y22)(x23+y23)…(x2n+y2n)=a2+b2. As required.
Go to