Question 3, Exercise 1.4

Solutions of Question 3 of Exercise 1.4 of Unit 01: Complex Numbers. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.

If (x1+iy1)(x2+iy2)(x3+iy3)(xn+iyn)=a+ib, show that:

(i) (x21+y21)(x22+y22)(x23+y23)(x2n+y2n)=a2+b2

(ii) nr=1tan1(yrxr)=tan1(ba)+2kπ,kZ

Solution.

Let zr=xr+iyr, r=1,2,...,n and z=a+ib. Then

|zr|=x2r+y2rand|z|=a2+b2.θk=arg(zk)=tan1(yrxr)andθ=tan1(ba). We can write these complex numbers in polar form as: zr=|zr|eiθkandz=|z|eiθ(1) Now we have given (x1+iy1)(x2+iy2)(x3+iy3)(xn+iyn)=a+ibz1z2z3zn=z. By using (1), we have |z1|eiθ1|z2|eiθ2|z3|eiθ3|zn|eiθn=|z|eiθ(|z1||z2||z3||zn|)ei(θ1+θ2+θ3++θn)=|z|eiθ. This gives |z1||z2||z3||zn|=|z|(2) and θ1+θ2+θ3++θn=θ+2kπ,where kZ.(3) Taking square on both sides of (2), we get |z1|2|z2|2|z3|2|zn|2=|z|2 implies (x21+y21)(x22+y22)(x23+y23)(x2n+y2n)=a2+b2(4) Now from (3), we have nr=1θr=θ+2kπ,where kZ, implies nr=1tan1(yrxr)=tan1(ba)+2kπ,kZ.(5) (4) and (5) are our required results.

Alternative Method for Part (i)

We have given (x1+iy1)(x2+iy2)(x3+iy3)(xn+iyn)=a+ib|(x1+iy1)(x2+iy2)(x3+iy3)(xn+iyn)|=|a+ib||x1+iy1||x2+iy2||x3+iy3||xn+iyn|=|a+ib| Taking square on both side, we have |x1+iy1|2|x2+iy2|2|x3+iy3|2|xn+iyn|2=|a+ib|2(x21+y21)(x22+y22)(x23+y23)(x2n+y2n)=a2+b2. As required.