Question 5, Exercise 1.4

Solutions of Question 5 of Exercise 1.4 of Unit 01: Complex Numbers. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.

If cosα+cosβ+cosγ=sinα+sinβ+sinγ=0, show that:

(i) cos3α+cos3β+cos3γ=3cos(α+β+γ).

(ii) sin3α+sin3β+sin3γ=3sin(α+β+γ).

Solution.

Given: cosα+cosβ+cosγ=0(1)sinα+sinβ+sinγ=0(2) Suppose a=eiα, b=eiβ and c=eiγ, then a+b+c=eiα+eiβ+eiγ=cosα+isinα+cosβ+isinβ+cosγ+isinγ=(cosα+cosβ+cosγ)+i(sinα+sinβ+sinγ). Using (1) and (2) above, we get a+b+c=0(3). Since we know a3+b3+c33abc=(a+b+c)(a2+b2+c2abbcca), Using (3), we have a3+b3+c33abc=0 a3+b3+c3=3abc. Putting values of a, b and c, we get (eiα)3+(eiβ)3+(eiγ)3=3eiαeiβeiγe3iα+e3iβ+e3iγ=3ei(α+β+γ)cos3α+isin3α+cos3β+isin3β+cos3γ+isin3γ=3[cos(α+β+γ)+isin(α+β+γ)]cos3α+cos3β+cos3γ+i(sin3α+sin3β+sin3γ)=3cos(α+β+γ)+i3sin(α+β+γ). Equating real and imaginary parts, we get cos3α+cos3β+cos3γ=3cos(α+β+γ)sin3α+sin3β+sin3γ=3sin(α+β+γ), as required.