Question 6(i-ix), Exercise 1.4
Solutions of Question 6(i-ix) of Exercise 1.4 of Unit 01: Complex Numbers. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 6(i)
Write a given complex number in the algebraic form: √2(cos315∘+isin315∘)
Solution.
√2(cos315∘+isin315∘)=√2(1√2−i√2)=1−i.
Question 6(ii)
Write a given complex number in the algebraic form: 5(cos210∘+isin210∘)
Solution.
5(cos210∘+isin210∘)=5(−√32−12i)=−5√32−52i
Question 6(iii)
Write a given complex number in the algebraic form: 2(cos3π2+isin3π2)
Solution.
2(cos3π2+isin3π2)=2(0+i(−1))=−2i
Question 6(iv)
Write a given complex number in the algebraic form: 4(cos5π6+isin5π6)
Solution.
4(cos5π6+isin5π6)=4(−√32+i⋅12)=−2√3+2i
Question 6(v)
Write a given complex number in the algebraic form: 2(cosπ6+isinπ6)
Solution.
2(cosπ6+isinπ6)=2(√32+i⋅12)=√3+i
Question 6(vi)
Write a given complex number in the algebraic form: cos135∘+isin135∘
Solution.
cos135∘+isin135∘=−1√2+i√2
Question 6(vii)
Write a given complex number in the algebraic form: 10(cos50∘+isin50∘)
Solution.
10(cos50∘+isin50∘)≈10(0.643+i0.766)=6.43+7.66i
Note: Generally, we write exact answers, not approximate answers.
Question 6(viii)
Write a given complex number in the algebraic form: √2(cos3π4+isin3π4)
Solution.
√2(cos3π4+isin3π4)=√2(−1√2+i1√2)=−1+i.
Question 6(ix)
Write a given complex number in the algebraic form: 4(cos2π3+isin2π3)
Solution.
4(cos2π3+isin2π3)=4(−12+i⋅√32)=−2+2√3i.
Go to