Question 7, Exercise 1.4

Solutions of Question 7 of Exercise 1.4 of Unit 01: Complex Numbers. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.

Convert the following equation in Cartesian form: arg(z1)=π4

Solution.

Suppose z=x+iy, as arg(z1)=π4arg(x+iy1)=π4arg(x1+iy)=π4tan1(yx1)=π4yx1=tan(π4)yx1=1y=x+1x+y=1. As required.

Convert the following equations and inequations in Cartesian form: zˉz=4|eiθ|

Solution.

Suppose z=x+iy, then ˉz=xiy. As zˉz=4|eiθ|(x+iy)(xiy)=4|cosθ+isinθ|x2+y2=4cos2θ+sin2θx2+y2=41x2+y2=4.

Convert the following equations and inequations in Cartesian form: π3arg(z4)π3

Solution.

π3arg(z4)π3π3arg(x+iy4)π3π3arg(x4+iy)π3π3tan1(yx4)π3tan(π3)yx4tan(π3)3yx43. As required.

Convert the following equations and inequations in Cartesian form: 0arg(z41+i)π6

Solution.

0arg(z41+i)π60arg(x+iy41+i)π60arg(x4+iy1+i)π60arg(x4+iy1+i×1i1i)π60arg(x4+yi(x4)+iy1+1)π60arg(x+y4+i(yx+4)2)π60arg(x+y42+iyx+42)π60tan1(yx+4x+y4)π6tan(0)yx+4x+y4tan(π6)0yx+4x+y41303(yx+4x+y4)1. As required.

Convert the following equations and inequations in Cartesian form: arg(1iz1z)=π4;zi

Solution.

Given arg(1iz1z)=π4...(1) Using the identity arg(θ1θ2)=arg(θ1)arg(θ2), we have arg(1iz1z)=arg(1iz)arg(1z)=arg(1i(x+iy))arg(1(x+iy)) as z=x+iy=arg(1ixi2y)arg(1xiy)=arg(1+yix)arg(1xiy)=tan1(x1+y)tan1(y1x)=tan1(x1+y)+tan1(y1x)tan1(θ)=tan1(θ)=tan1(y1x)tan1(x1+y) Using it in (1), we get tan1(y1x)tan1(x1+y)=π4 Now using the identity, tan1A+tan1B=tan1(A+B1AB), we have tan1(y1xx1+y1+y1xx1+y)=π4y+y2x+x2(1x)(1+y)(1x)(1+y)+xy(1x)(1+y)=tanπ4x2+y2x+y1x+yxy+xy=1x2+y2x+y=1x+yx2+y2=1. As required.

Convert the following equations and inequations in Cartesian form: 12arg(zi)=π312arg(z+i)

Solution.

Assume z=x+iy, then 12arg(zi)=π312arg(z+i)12arg(zi)+12arg(z+i)=π3arg(x+iyi)+arg(x+iy+i)=2π3arg(x+iyi)+arg(x+iy+i)=2π3arg(x+i(y1))+arg(x+i(y+1))=2π3tan1(y1x)+tan1(y+1x)=2π3. Now using the identity, tan1A+tan1B=tan1(A+B1AB), we have tan1(y1x+y+1x1(y1x)(y+1x))=2π3y1+y+1x1y21x2=tan(2π3)2yxx2y2+1x2=32xyx2y2+1=32xy=3(x2y2+1)3(x2y2+1)+2xy=0. As required.