Question 7, Exercise 1.4
Solutions of Question 7 of Exercise 1.4 of Unit 01: Complex Numbers. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 7(i)
Convert the following equation in Cartesian form: arg(z−1)=−π4
Solution.
Suppose z=x+iy, as arg(z−1)=−π4⟹arg(x+iy−1)=−π4⟹arg(x−1+iy)=−π4⟹tan−1(yx−1)=−π4⟹yx−1=tan(−π4)⟹yx−1=−1⟹y=−x+1⟹x+y=1. As required.
Question 7(ii)
Convert the following equations and inequations in Cartesian form: zˉz=4|eiθ|
Solution.
Suppose z=x+iy, then ˉz=x−iy. As zˉz=4|eiθ|⟹(x+iy)(x−iy)=4|cosθ+isinθ|⟹x2+y2=4√cos2θ+sin2θ⟹x2+y2=4√1⟹x2+y2=4.
Question 7(iii)
Convert the following equations and inequations in Cartesian form: −π3≤arg(z−4)≤π3
Solution.
−π3≤arg(z−4)≤π3⟹−π3≤arg(x+iy−4)≤π3⟹−π3≤arg(x−4+iy)≤π3⟹−π3≤tan−1(yx−4)≤π3⟹tan(−π3)≤yx−4≤tan(π3)⟹−√3≤yx−4≤√3. As required.
Question 7(iv)
Convert the following equations and inequations in Cartesian form: 0≤arg(z−41+i)≤π6
Solution.
0≤arg(z−41+i)≤π6⟹0≤arg(x+iy−41+i)≤π6⟹0≤arg(x−4+iy1+i)≤π6⟹0≤arg(x−4+iy1+i×1−i1−i)≤π6⟹0≤arg(x−4+y−i(x−4)+iy1+1)≤π6⟹0≤arg(x+y−4+i(y−x+4)2)≤π6⟹0≤arg(x+y−42+iy−x+42)≤π6⟹0≤tan−1(y−x+4x+y−4)≤π6⟹tan(0)≤y−x+4x+y−4≤tan(π6)⟹0≤y−x+4x+y−4≤1√3⟹0≤√3(y−x+4x+y−4)≤1. As required.
Question 7(v)
Convert the following equations and inequations in Cartesian form: arg(1−iz1−z)=π4;z≠i
Solution.
Given arg(1−iz1−z)=π4...(1) Using the identity arg(θ1θ2)=arg(θ1)−arg(θ2), we have arg(1−iz1−z)=arg(1−iz)−arg(1−z)=arg(1−i(x+iy))−arg(1−(x+iy)) as z=x+iy=arg(1−ix−i2y)−arg(1−x−iy)=arg(1+y−ix)−arg(1−x−iy)=tan−1(−x1+y)−tan−1(−y1−x)=−tan−1(x1+y)+tan−1(y1−x)∵tan−1(−θ)=−tan−1(θ)=tan−1(y1−x)−tan−1(x1+y) Using it in (1), we get tan−1(y1−x)−tan−1(x1+y)=π4 Now using the identity, tan−1A+tan−1B=tan−1(A+B1−AB), we have tan−1(y1−x−x1+y1+y1−x⋅x1+y)=π4⟹y+y2−x+x2(1−x)(1+y)(1−x)(1+y)+xy(1−x)(1+y)=tanπ4⟹x2+y2−x+y1−x+y−xy+xy=1⟹x2+y2−x+y=1−x+y⟹x2+y2=1. As required.
Question 7(vi)
Convert the following equations and inequations in Cartesian form: 12arg(z−i)=π3−12arg(z+i)
Solution.
Assume z=x+iy, then 12arg(z−i)=π3−12arg(z+i)⟹12arg(z−i)+12arg(z+i)=π3⟹arg(x+iy−i)+arg(x+iy+i)=2π3⟹arg(x+iy−i)+arg(x+iy+i)=2π3⟹arg(x+i(y−1))+arg(x+i(y+1))=2π3⟹tan−1(y−1x)+tan−1(y+1x)=2π3. Now using the identity, tan−1A+tan−1B=tan−1(A+B1−AB), we have tan−1(y−1x+y+1x1−(y−1x)(y+1x))=2π3⟹y−1+y+1x1−y2−1x2=tan(2π3)⟹2yxx2−y2+1x2=−√3⟹2xyx2−y2+1=−√3⟹2xy=−√3(x2−y2+1)⟹√3(x2−y2+1)+2xy=0. As required.
Go to