Question 2, Exercise 2.3
Solutions of Question 2 of Exercise 2.3 of Unit 02: Matrices and Determinants. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 2(i)
Evaluate the determinant of the following matrix [323451210] using cofactor method.
Solution.
The elements of R1 are a11=3, a12=2, and a13=3. Now we find their corresponding cofactors. A=[323451210]A11=(−1)1+1|5110|=(−1)2(5⋅0−1⋅1)=(1)(−1)=−1A12=(−1)1+2|4120|=(−1)3(4⋅0−1⋅2)=(−1)(−2)=2A13=(−1)1+3|4521|=(−1)4(4⋅1−5⋅2)=(1)(4−10)=−6 Now, we use these cofactors to find the determinant: det(A)=a11A11+a12A12+a13A13=3(−1)+2(2)+3(−6)=−3+4−18=−17 Thus, the determinant of the matrix [323451210] is: −17
Question 2(ii)
Evaluate the determinant of the following matrix [23−1−102314] using cofactor method.
Solution.
The elements of R1 are a11=2, a12=3, and a13=−1. Now we find their corresponding cofactors. A=[23−1−102314]A11=(−1)1+1|0214|=(−1)2(0⋅4−2⋅1)=(1)(0−2)=−2A12=(−1)1+2|−1234|=(−1)3(−1⋅4−2⋅3)=(−1)(−4−6)=10A13=(−1)1+3|−1031|=(−1)4(−1⋅1−0⋅3)=(1)(−1)=−1 Now, we use these cofactors to find the determinant: det(A)=a11A11+a12A12+a13A13=2(−2)+3(10)+(−1)(−1)=−4+30+1=27 Thus, the determinant of the matrix [23−1−102314] is:27
Question 2(iii)
Evaluate the determinant of the following matrix [2i611−i2013i] using cofactor method.
Solution.
The elements of R1 are a11=2i, a12=6, and a13=1.
A=[2i611−i2013i]A11=(−1)1+1|−i213i|=(−1)2(−i⋅3i−2⋅1)=(1)(−3i2−2)=−3(−1)−2=3−2=1A12=(−1)1+2|1203i|=(−1)3(1⋅3i−2⋅0)=(−1)(3i−0)=−3iA13=(−1)1+3|1−i01|=(−1)4(1⋅1−(−i)⋅0)=(1)(1−0)=1 Now, we use these cofactors to find the determinant: det(A)=a11A11+a12A12+a13A13=2i(1)+6(−3i)+1(1)=2i−18i+1=−16i+1 Thus, the determinant of the matrix [2i611−i2013i] is:1−16i
Question 2(iv)
Evaluate the determinant of the following matrix [1−i21+i314023] using cofactor method.
Solution.
The elements of R1 are a11=1−i, a12=2, and a13=1+i. A=[1−i21+i314023]A11=(−1)1+1|1423|=(−1)2(1⋅3−4⋅2)=(1)(3−8)=−5A12=(−1)1+2|3403|=(−1)3(3⋅3−4⋅0)=(−1)(9−0)=−9A13=(−1)1+3|3102|=(−1)4(3⋅2−1⋅0)=(1)(6−0)=6 Now, we use these cofactors to find the determinant: det(A)=a11A11+a12A12+a13A13=(1−i)(−5)+2(−9)+(1+i)(6)=−5+5i−18+6+6i=−17+11i Thus, the determinant of the matrix [1−i21+i314023] is: −17+11i
Go to