Question 6, Exercise 2.3
Solutions of Question 6 of Exercise 2.3 of Unit 02: Matrices and Determinants. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 6
If A=[21−3010216] then find A−1 and hence show that AA−1=A−1A=I3.
Solution.
A=[21−3010216]
To find the inverse A−1 of the matrix A, we will use the method of row reduction (Gaussian elimination).
A∣I=[21−3100010010216001]=[21−3100010010009−101]R3−R1=[21−3100010010001−19019]19R3=[2101−3(19)03(19)010010001−19019]R1+3R3=[2101−13013010010001−19019]R1+3R3=[21023013010010001−19019]=[20023−113010010001−19019]R1−R2=[10013−1216010010001−19019]12R1
Now, A−1=[13−1216010−19019]
To show AA−1=I3and A−1A=I3
AA−1=[21−3010216][13−1216010−19019]=[23+39−1+113−1301023−23−1+113+23]=[100010001]=I3NowA−1AA−1A=[13−1216010−19019][21−3010216]=[23+1313−12+16−1+1010−29+29−19+1913+23]=[100010001]=I3
Thus, we have shown that AA−1=A−1A=I3.
Go to