Question 4, Exercise 2.6

Solutions of Question 4 of Exercise 2.6 of Unit 02: Matrices and Determinants. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.

Solve the system of linear equation by Gauss-Jordan method.
2x1x2x3=2
3x14x2+3x3=7
4x1+2x25x3=10

Solution.

2x1x2x3=2,3x14x2+3x3=7,4x1+2x25x3=10,

The associative augment matrix: Ab=[211:2343:7425:10]R[11212|1343|7425|10]12R[11212:105292:4425:10]R23R1R[11212:105292:4043:6]R34R1R[11212:10195:85043:6]25R2R[11212:10195:8500215:625]R34R2R[11212:10195:85001:6221]521R3R[11212|1010|267001|6221]R2+95R3R[1120|5221010|267001|6221]R1+12R3R[100|133010|267001|6221]R1+12R2 Thus, the solution to the system of equations is: x1=133,x2=267,x3=6221.

Solve the system of linear equation by Gauss-Jordan method.
2x13x2+7x3=1
4x1+5x23x3=4
10x14x2+18x3=7

Solution.

2x13x2+7x3=1,4x1+5x23x3=4,10x14x2+18x3=7.

The associated augmented matrix is: Ab=[237:1453:410418:7]R[13272:12453:410418:7](Divide R1 by 2)R[13272:1201117:210418:7](R2 - 4R1)R[13272:1201117:201117:2](R3 - 10R1)R[13272:12011711:211000:0](Divide R2 by 11 and R3R2). There is no value of x. Then

x3=0.

From the second row: x2=211 From the first row: x132x2+72x3=12x1=12+32211x1=12+311x1=1722 Thus, the general solution is: x1=2211,x2=211,x3=0

Solve the system of linear equation by Gauss-Jordan method.
x1+x2+x3=3
2x13x2+2x3=7
4x1+2x25x3=10

Solution. Do yourself.

Solve the system of linear equation by Gauss-Jordan method.
2x17x2+10x3=1
x1+2x24x3=8
2x111x2+13x3=7

Solution. Do yourself.