Question 1, Review Exercise

Solutions of Question 1 of Review Exercise of Unit 02: Matrices and Determinants. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.

Select the best matching option. Chose the correct option.

i. If order of A is m×n and order of B is n×p then order of AB is:

  • (a) n×p
  • (b) m×p
  • (c) p×m
  • (d) n×n
    See Answer
    (b): m×p

ii. If A is a row matrix of order 1×n then order of AtA is:

  • (a) 1×n
  • (b) n×1
  • (c) 1×1
  • (d) n×n
    See Answer
    (d): n×n

iii. For an element aij of a square matrix A :

  • (a) aij=(1)i+jAij
  • (b)aij=(1)i+jMij
  • (c) AijMij=(1)i+j
  • (d) aij=Mij
    See Answer
    (d): aij=Mij

iv. If A is any matrix then A and At are always conformable for:

  • (a) addition
  • (b) multiplication
  • (c) subtraction
  • (d) all of these
    See Answer
    (b): multiplication

v. If A is a square matrix of order 3×3 and |A|=3 then value of |adjA| is:

  • (a) 3
  • (b) 1/3
  • (c) 9
  • (d) 6
    See Answer
    ©: 9

vi. For the square matrix A of order 3×3 with |A|=9;A21=2;A22=3;A23=1; a21=1;a23=2, the value of a22 is:

  • (a) 2
  • (b) 3
  • (c) 9
  • (d) 1
    See Answer
    (b): 3

vii. System of homogeneous linear equations has non-trivial solution if:

  • (a) |A|>0
  • (b) |A|<0
  • (c) |A|=0
  • (d) |A|0
    See Answer
    (d): |A|0

viii. For non-homogeneous system of equations; the system is inconsistent if:

  • (a) RankA=RankAb$
  • (b) RankARankAb
  • (c) RankA < no. of variables
  • (d) Rank Ab> no. of variables
    See Answer
    (c): RankA < no. of variables

ix. For a system of non-homogeneous equations with three variables system will have unique solution if:

  • (a) RankA<3
  • (b) RankAb<3
  • (c) RankA=RankAb=3
  • (d) RankA=RankAb<3
    See Answer
    (c):RankA=RankAb=3

x. A system of non- homogeneous equation having infinite many solutions can be solved by using:

  • (a) Inversion method
  • (b) Cramer's rule
  • (c) Gauss-Jordan method
  • (d) all of these
    See Answer
    (d): all of these