Question 1, Review Exercise
Solutions of Question 1 of Review Exercise of Unit 02: Matrices and Determinants. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 1
Select the best matching option. Chose the correct option.
i. If order of A is m×n and order of B is n×p then order of AB is:
- (a) n×p
- (b) m×p
- (c) p×m
- (d) n×n
(b): m×p
ii. If A is a row matrix of order 1×n then order of AtA is:
- (a) 1×n
- (b) n×1
- (c) 1×1
- (d) n×n
(d): n×n
iii. For an element aij of a square matrix A :
- (a) aij=(−1)i+jAij
- (b)aij=(−1)i+jMij
- (c) AijMij=(−1)i+j
- (d) aij=Mij
(d): aij=Mij
iv. If A is any matrix then A and At are always conformable for:
- (a) addition
- (b) multiplication
- (c) subtraction
- (d) all of these
(b): multiplication
v. If A is a square matrix of order 3×3 and |A|=3 then value of |adjA| is:
- (a) 3
- (b) 1/3
- (c) 9
- (d) 6
©: 9
vi. For the square matrix A of order 3×3 with |A|=9;A21=2;A22=3;A23=−1; a21=1;a23=2, the value of a22 is:
- (a) 2
- (b) 3
- (c) 9
- (d) −1
(b): 3
vii. System of homogeneous linear equations has non-trivial solution if:
- (a) |A|>0
- (b) |A|<0
- (c) |A|=0
- (d) |A|≠0
(d): |A|≠0
viii. For non-homogeneous system of equations; the system is inconsistent if:
- (a) RankA=RankAb$
- (b) RankA≠RankAb
- (c) RankA < no. of variables
- (d) Rank Ab> no. of variables
(c): RankA < no. of variables
ix. For a system of non-homogeneous equations with three variables system will have unique solution if:
- (a) RankA<3
- (b) RankAb<3
- (c) RankA=RankAb=3
- (d) RankA=RankAb<3
(c):RankA=RankAb=3
x. A system of non- homogeneous equation having infinite many solutions can be solved by using:
- (a) Inversion method
- (b) Cramer's rule
- (c) Gauss-Jordan method
- (d) all of these
(d): all of these
Go to