Question 3 and 4, Exercise 6.1
Solutions of Question 3 and 4 of Exercise 6.1 of Unit 06: Permutation and Combination. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 3(i)
Prove that: 15!+36!+17!=431515!+36!+17!=4315
Solution.
LHS=15!+36!+17!=15!+36⋅5!+17⋅6⋅5!=15!(1+36+17⋅6)=1120(1+12+142)=1120⋅3221=4315=RHS
Question 3(ii)
Prove that: (n−1)!(n−3)!=n2−3n+2
Solution.
LHS=(n−1)!(n−3)!=(n−1)(n−2)(n−3!(n−3)!=n2−n−2n+2=n2−3n+2=RHS
Question 4(i)
Show that: (2n)!n!=2n(1⋅3⋅5⋯(2n−1))
Solution.
L.H.S.=(2n)!n!=2n(2n−1)(2n−2)⋯(2n−n)(2n−(n+1))⋯(2n−(2n−1))n!=2n(2n−1)(2n−2)⋯(n)(n−1)(n−2)⋯(2)(1)n!=[2n(2n−2)⋯2][(2n−1)(2n−3)⋯(3)(1)]n!=[2n˙2(n−1)⋯2(1)][(2n−1)(2n−3)⋯(3)(1)]n!=2n[n˙(n−1)⋯(1)][(2n−1)(2n−3)⋯(3)(1)]n!=2nn![(2n−1)(2n−3)⋯(3)(1)]n!=2n[(2n−1)(2n−3)⋯(3)(1)=R.H.S.
Question 4(ii)
Show that: (2n−1)!n!=2n−1(1⋅3⋅5⋯(2n−1))
Solution.
L.H.S.=(2n−1)!n!=(2n−1)(2n−2)(2n−3)⋯(2n−n)(2n−(n+1))(2n−(2n−n))(2n−(2n−1))n!=(2n−1)(2n−2)(2n−3)⋯(n)(n−1)(n−2)⋯(4)(3)(2)(1)n!=[(2n−2)(2n−4)(2n−6)⋯(6)(4)(2)][(2n−1)(2n−3)⋯(5)(3)(1)n!=2n−1[(n−1)(n−2)⋯(3)(2)(1)][(2n−1)(2n−3)⋯(5)(3)(1)n!=2n−1n!(1.3.5.⋯(2n−3)(2n−1))n!=2n−1(1.3.5⋯(2n−1))=R.H.S.
Go to