Question 5, Exercise 6.1
Solutions of Question 5 of Exercise 6.1 of Unit 06: Permutation and Combination. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 5(i)
Find the value of $n$: $\quad \dfrac{n}{(n-4)!}=\dfrac{3.3!}{(n-3)!}$
Solution. \begin{align*} \dfrac{n}{(n-4)!}&=\dfrac{3.3!}{(n-3)!}\\ \dfrac{n}{(n-4)!}&=\dfrac{3.3!}{(n-3)(n-4)!}\\ n&=\dfrac{3\times 6}{n-3}\\ n(n-3)&=18\\ n^2-3n&=18\\ n^2-2n-18&=0\\ n^2+3n-6n-18&=0\\ n(n+3)-6(n+3)&=0\\ (n+3)(n-6)&=0\\ n+3=0\quad \text{or}&\quad n-6=0\\ n=-3\quad\text{or}&\quad n=6 \end{align*} The value of $n$ is not negative, so $n=6$
Question 5(ii)
Find the value of $n$: $\quad \dfrac{n!}{(n-4)!}:\dfrac{(n-1)!}{(n-3)!}=36:2$
Solution. \begin{align*} \dfrac{n!}{(n-4)!}:\dfrac{(n-1)!}{(n-3)!}&=36:2\\ \dfrac{n(n-1)!}{(n-4)!}:\dfrac{(n-1)!}{(n-3)(n-4)!}&=36:2\\ \dfrac{n}{1}:\dfrac{1}{(n-3)}&=36:2\\ n(n-3)&=\dfrac{36}{2}\\ n^2-3n-18&=0\\ n^2+3n-6n-18&=0\\ n(n+3)-6(n+3)&=0\\ (n+3)(n-6)&=0\\ n+3=0\quad \text{or}&\quad n-6=0\\ n=-3\quad \text{or}&\quad n=6\\ \end{align*} $n$ cannot be negative, so $n=6$
Go to