Question 1(i-v), Exercise 6.3

Solutions of Question 1(i-v) of Exercise 6.3 of Unit 06: Permutation and Combination. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.

Prove for nN: nCr=n!r!(nr)!

Solution.

Let us have n distinct objects and we want to take r at a time where 0<r<n.
Let X be the total combinations.
These r objects may be arranged in r ! ways but all r ! arrangement would be treated as one combination. i.e.,

r!X=nPrr!X=n!(nr)!X=n!r!(nr)!=nCr

Prove for nN: nn1Cr1=(nr+1)nCr1

Solution.

L.H.S=nn1Cr1=n(n1)!(r1)!((n1)(r1))!=n(n1)!(r1)!(nr)!=n!(r1)!(nr)!

Multiply and divide by (nr+1) =(nr+1)n!(r1)!(nr+1)(nr)!(nr)!(nr+1)=(nr+1)!=(nr+1)n!(r1)!(nr+1)!=(nr+1)n!(r1)!(n(r1))!=(n+r+1)nCr1= R.H.S 

Prove for nN: rnCr=(nr+1)nCr1

Solution.

L.H.S=rn!r!(nr)!=γn!γ(r1)!(nr)!=n!(r1)!(nr)! Multiply and divide by (nr+1) =(nr+1)n!(r1)!(nr+1)(nr)!=(nr+1)n!(r1)!(nr+1)!=(nr+1)n!(r1)!(n(r1))!=(nr+1)nCr1= R.H.S 

Prove for nN: n1Cr1+n1Cr=nCr

Solution.

L.H.S=(n1)!(r1)!((n1)(r1))!+(n1)!r!(n1r)!=(n1)!(r1)!(nr)!+(n1)!r!(nr1)!r!=r(r1)!&(nr)!=(nr)(nr1)!=(n1)!(r1)!(nr)(nr1)!+(n1)!r(r1)!(nr1)!=(n1)!r+(n1)!(nr)r(r1)!(nr)(nr1)!=(n1)!(γ+nγ)r!(nr)!r(r1)=r!&(nr)(nr1)!=(nr)!=n(n1)!r!(nr)!=n!r!(nr)!=nCr= R.H.S n(n1)!=n!

Prove for nN: nCr+nCr1=n+1Cr

Solution.

L.H.S=n!r!(nr)!+n!(r1)!(n(r1))!=n!r!(nr)!+n!(r1)!(nr+1)!=n!r(r1)!(nr)!+n!(r1)!(nr+1)(nr)!r!=r(r1)!(nr+1)!=(nr+1)(nr)!=n!(nr+1)+n!(r)r(nr)!(nr+1)(nr)!=n!(n+1)r!(nr+1)!=(n+1)!r!(nr+1)!=n+1Cr=R.H.S.