Question 1(i-v), Exercise 6.3
Solutions of Question 1(i-v) of Exercise 6.3 of Unit 06: Permutation and Combination. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 1(i)
Prove for n∈N: nCr=n!r!(n−r)!
Solution.
Let us have n distinct objects and we want to take r at a time where 0<r<n.
Let X be the total combinations.
These r objects may be arranged in r ! ways but all r ! arrangement would be treated as one combination. i.e.,
r!X=nPr⇒r!X=n!(n−r)!⇒X=n!r!(n−r)!=nCr
Question 1(ii)
Prove for n∈N: n⋅n−1Cr−1=(n−r+1)nCr−1
Solution.
L.H.S=n⋅n−1Cr−1=n⋅(n−1)!(r−1)!((n−1)−(r−1))!=n(n−1)!(r−1)!(n−r)!=n!(r−1)!(n−r)!
Multiply and divide by (n−r+1) =(n−r+1)n!(r−1)!(n−r+1)(n−r)!∵(n−r)!(n−r+1)=(n−r+1)!⇒=(n−r+1)n!(r−1)!(n−r+1)!=(n−r+1)n!(r−1)!(n−(r−1))!=(n+r+1)nCr−1= R.H.S
Question 1(iii)
Prove for n∈N: rnCr=(n−r+1)nCr−1
Solution.
L.H.S=r⋅n!r!(n−r)!=γ⋅n!γ(r−1)!(n−r)!=n!(r−1)!(n−r)! Multiply and divide by (n−r+1) =(n−r+1)n!(r−1)!(n−r+1)(n−r)!=(n−r+1)n!(r−1)!(n−r+1)!=(n−r+1)n!(r−1)!(n−(r−1))!=(n−r+1)nCr−1= R.H.S
Question 1(iv)
Prove for n∈N: n−1Cr−1+n−1Cr=nCr
Solution.
L.H.S=(n−1)!(r−1)!((n−1)−(r−1))!+(n−1)!r!(n−1−r)!=(n−1)!(r−1)!(n−r)!+(n−1)!r!(n−r−1)!∵r!=r(r−1)!&(n−r)!=(n−r)(n−r−1)!=(n−1)!(r−1)!(n−r)(n−r−1)!+(n−1)!r(r−1)!(n−r−1)!=(n−1)!r+(n−1)!(n−r)r(r−1)!(n−r)(n−r−1)!=(n−1)!(γ+n−γ)r!(n−r)!∵r(r−1)=r!&(n−r)(n−r−1)!=(n−r)!=n(n−1)!r!(n−r)!=n!r!(n−r)!=nCr= R.H.S ∵n(n−1)!=n!
Question 1(v)
Prove for n∈N: nCr+nCr−1=n+1Cr
Solution.
L.H.S=n!r!(n−r)!+n!(r−1)!(n−(r−1))!=n!r!(n−r)!+n!(r−1)!(n−r+1)!=n!r(r−1)!(n−r)!+n!(r−1)!(n−r+1)(n−r)!∵r!=r(r−1)!∵(n−r+1)!=(n−r+1)(n−r)!=n!(n−r+1)+n!(r)r(n−r)!(n−r+1)(n−r)!=n!(n+1)r!(n−r+1)!=(n+1)!r!(n−r+1)!=n+1Cr=R.H.S.
Go to