Question 1(vi-x), Exercise 6.3

Solutions of Question 1(vi-x) of Exercise 6.3 of Unit 06: Permutation and Combination. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.

Prove for nN: 2nCn=2n[1.3.5.(2n1)]n!

Solution.

L.H.S=2nCn=(2n)!n!(2nn)!=(2n)(2n1)(2n2)(2nn)(2n(n+1))..2.1n!n!=(2n)(2n1)(2n2)..(n)(n1)(n2)..2.1n!n!=[(2n)(2n2)(2n4)42]n!n!×[(2n1)(2n3)3.1]n!n!=2n[n(n1)(n2)21]n×[(2n1)3.1]n=2nn![(2n1)31]n!n!=2n(135(2n1))n!=R.H.S

Prove for nN: nCp=nCqp=qorp+q=n

Solution.

Let nCp=nCqn!p!(np)!=n!q!(nq)!q!(nq)!=p!(np)!q!=p!i.e.q=porq!=(np)!i.e.q=npn=p+q

Prove for nN: nCr+2nCr1+nCr2=n+2Cr

Solution.

L.H.S=nCp+2nCr1+nCr2=n+2Cr=n!r!(nr)!+2n!(r1)!(n(r1))!+n!(r2)!(n(r2))!=n!r!(nr)!+2n!(r1)!(nr+1)!+n!(r2)!(nr+2)!=n!r(r1)(r2)!(nr)!+2n!(r1)(r2)!(nr+1)(nr)!+n!(r2)!(nr+2)(nr+1)(nr)!=n!((nr+1)+2r)r(r1)(r2)!(nr+1)(nr)!+n!(r2)!(nr+2)(nr+1)(nr)!=n!(n+r+1)r(r1)(r2)!(nr+1)(nr)!+n!(r2)!(nr+2)(nr+1)(nr)!=n![(nr+2)(n+r+1)+r(r1)]r(r1)(r2)!(nr+2)(nr+1)(nr)!=n![n2+nr+nrnr2r+2n+2r+2]r!(nr+2)!+n![r2r]r!(nr+2)!=n![n2+3nr2+r+2]r!(nr+2)!+n![r2r]r!(nr+2)!=n![n2+3nr2+r+2+r2r]r!(nr+2)!=n![n2+3n+2]r!(nr+2)!=n![n2+n+2n+2]r!((n+2)r)!=n![n(n+1)+2(n+1)]r!((n+2)r)!=n!(n+1)(n+2)r!((n+2)r)!n!(n+1)(n+2)=(n+2)!=(n+2)!r!((n+2)r)!=n+2Cr=R.H.S

Prove for nN: rnCr=nn1Cr1

Solution.

L.H.S=rnCr=rn!r!(nr)!r!r(r1)!=n!(r1)(nr)!n!=n(n1)!=n(n1)!(r1)!((n1)(r1))!=nn1Cr1= R.H.S 

Prove for nN: The product of k consecutive integer is divisible by k!.

Solution.

As product of 1stk positive integers is

1×2×3×4××k=k!

as this product is equal to k ! so it is divisible by k !