Question 1(vi-x), Exercise 6.3
Solutions of Question 1(vi-x) of Exercise 6.3 of Unit 06: Permutation and Combination. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 1(vi)
Prove for n∈N: 2nCn=2n[1.3.5.⋯(2n−1)]n!
Solution.
L.H.S=2nCn=(2n)!n!(2n−n)!=(2n)(2n−1)(2n−2)(2n−n)(2n−(n+1))..2.1n!⋅n!=(2n)(2n−1)(2n−2)..(n)(n−1)(n−2)..2.1n!⋅n!=[(2n)(2n−2)(2n−4)…4⋅2]n!n!×[(2n−1)(2n−3)…3.1]n!n!=2n[n(n−1)(n−2)…2⋅1]n×[(2n−1)…3.1]n=2n⋅n![(2n−1)…3⋅1]n!n!=2n(1⋅3⋅5…(2n−1))n!=R.H.S
Question 1(vii)
Prove for n∈N: nCp=nCq⟹p=qorp+q=n
Solution.
Let nCp=nCq⇒n!p!(n−p)!=n!q!(n−q)!q!(n−q)!=p!(n−p)!⇒q!=p!i.e.q=porq!=(n−p)!i.e.q=n−pn=p+q
Question 1(viii)
Prove for n∈N: nCr+2nCr−1+nCr−2=n+2Cr
Solution.
L.H.S=nCp+2nCr−1+nCr−2=n+2Cr=n!r!(n−r)!+2n!(r−1)!(n−(r−1))!+n!(r−2)!(n−(r−2))!=n!r!(n−r)!+2n!(r−1)!(n−r+1)!+n!(r−2)!(n−r+2)!=n!r(r−1)(r−2)!(n−r)!+2n!(r−1)(r−2)!(n−r+1)(n−r)!+n!(r−2)!(n−r+2)(n−r+1)(n−r)!=n!((n−r+1)+2r)r(r−1)(r−2)!(n−r+1)(n−r)!+n!(r−2)!(n−r+2)(n−r+1)(n−r)!=n!(n+r+1)r(r−1)(r−2)!(n−r+1)(n−r)!+n!(r−2)!(n−r+2)(n−r+1)(n−r)!=n![(n−r+2)(n+r+1)+r(r−1)]r(r−1)(r−2)!(n−r+2)(n−r+1)(n−r)!=n![n2+nr+n−rn−r2−r+2n+2r+2]r!(n−r+2)!+n![r2−r]r!(n−r+2)!=n![n2+3n−r2+r+2]r!(n−r+2)!+n![r2−r]r!(n−r+2)!=n![n2+3n−r2+r+2+r2−r]r!(n−r+2)!=n![n2+3n+2]r!(n−r+2)!=n![n2+n+2n+2]r!((n+2)−r)!=n![n(n+1)+2(n+1)]r!((n+2)−r)!=n!(n+1)(n+2)r!((n+2)−r)!∵n!(n+1)(n+2)=(n+2)!=(n+2)!r!((n+2)−r)!=n+2Cr=R.H.S
Question 1(ix)
Prove for n∈N: r⋅nCr=nn−1Cr−1
Solution.
L.H.S=r⋅nCr=r⋅n!r!(n−r)!∵r!≥r(r−1)!=n!(r−1)(n−r)!∵n!=n(n−1)!=n⋅(n−1)!(r−1)!((n−1)−(r−1))!=nn−1Cr−1= R.H.S
Question 1(x)
Prove for n∈N: The product of k consecutive integer is divisible by k!.
Solution.
As product of 1stk positive integers is
1×2×3×4×…×k=k!
as this product is equal to k ! so it is divisible by k !
Go to