Question 2, Exercise 6.3
Solutions of Question 2 of Exercise 6.3 of Unit 06: Permutation and Combination. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 2(i)
Find n, if : nC5=nC8
Solution.
n!5!(n−5)!=n!8!(n−8)!18!(n−5)(n−6)(n−7)(n−8)!=18×7×6×8!(n−8)!336=(n−5)(n−6)(n−7)(n−5)(n2−13n+42)=336n3−13n2+42n−5n2+65n−210=336n3−18n2+107n−546=0
By Synthetic division
1−18107−54613013−655461−5420
Since remaining roots of n are imaginary so n=3.
Question 2(ii)
Find n, if : nC15=nC7
Solution.
Since nCr=nCn−r⇒Ifr=7thenn−r=15orn−7=15⇒n=15+7=22
Question 2(iii)
Find n, if : nC50=nC1
Solution.
As we know nC1=nCn−1⇒50=n−1⇒n=51
Question 2(iv)
Find n, if : 2nC3:nC3=11:1
Solution.
(2n)!(2n−3)!:n!3!(n−3)!=11:1(2n)(2n−1)(2n−2)(2n−3)!(2n−3)!:n(n−1)(n−2)(n−3)!(n−3)!=11:12n(2n−1)(2n−2)n(n−1)(n−2)=1112(4n2−4n−2n+2)n2−2n−n+2=118n2−12n+4=11n2−33n+223n2−21n+18=03(n2−7n+6)=0n2−7n+6=0(n−1)(n−6)=03≠0n−1=0orn−6=0n=1orn=6 n should be greater than 3, so n=6.
Question 2(v)
Find n, if : nC6:n−3C3=33:4
Solution.
n!6!(n−6)!:(n−3)!3!((n−3)−3)!=33:4n!6×5×4×3!(n−6)!:(n−3)!3!(n−6)!=33:4n(n−1)(n−2)(n−3)!120:(n−3)!1=33:4n(n−1)(n−2)120=334n(n−1)(n−2)=990n(n2−3n+2)=990n3−3n2+2n=990n3−3n2+2n−990=0
By Synthetic division
1−32−990110118899018900
Since remaining roots of n are imaginary so n=11.
Question 2(vi)
Find n, if : 2nC3:nC2=12:1
Solution.
(2n)!3!(2n−3)!:n!2!(n−2)!=12:1(2n)(2n−1)(2n−2)(2n−3)!3⋅2!(2n−3)!:n(n−1)(n−2)!2!(n−2)!=12:12n(2n−1)(2n−2)3n(n−1)=1212(2n−1)(2n−2)=36(n−1)2(4n2−4n−2n+2)=36n−368n2−12n+4=36n−368n2−48n+40=08(n2−6n+5)=0n2−6n+5=0n2−n−5n+5=0where8≠0n(n−1)−5(n−1)=0(n−1)(n−5)=0n−1=0n=1 or n−5=0n=5 n must be greater or equal to r=2, then n=5
Go to