Question 2, Exercise 6.3

Solutions of Question 2 of Exercise 6.3 of Unit 06: Permutation and Combination. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.

Find n, if : nC5=nC8

Solution.

n!5!(n5)!=n!8!(n8)!18!(n5)(n6)(n7)(n8)!=18×7×6×8!(n8)!336=(n5)(n6)(n7)(n5)(n213n+42)=336n313n2+42n5n2+65n210=336n318n2+107n546=0 By Synthetic division
118107546130136554615420 Since remaining roots of n are imaginary so n=3.

Find n, if : nC15=nC7

Solution.

Since nCr=nCnrIfr=7thennr=15orn7=15n=15+7=22

Find n, if : nC50=nC1

Solution.

As we know nC1=nCn150=n1n=51

Find n, if : 2nC3:nC3=11:1

Solution.

(2n)!(2n3)!:n!3!(n3)!=11:1(2n)(2n1)(2n2)(2n3)!(2n3)!:n(n1)(n2)(n3)!(n3)!=11:12n(2n1)(2n2)n(n1)(n2)=1112(4n24n2n+2)n22nn+2=118n212n+4=11n233n+223n221n+18=03(n27n+6)=0n27n+6=0(n1)(n6)=030n1=0orn6=0n=1orn=6 n should be greater than 3, so n=6.

Find n, if : nC6:n3C3=33:4

Solution.

n!6!(n6)!:(n3)!3!((n3)3)!=33:4n!6×5×4×3!(n6)!:(n3)!3!(n6)!=33:4n(n1)(n2)(n3)!120:(n3)!1=33:4n(n1)(n2)120=334n(n1)(n2)=990n(n23n+2)=990n33n2+2n=990n33n2+2n990=0 By Synthetic division
132990110118899018900 Since remaining roots of n are imaginary so n=11.

Find n, if : 2nC3:nC2=12:1

Solution.

(2n)!3!(2n3)!:n!2!(n2)!=12:1(2n)(2n1)(2n2)(2n3)!32!(2n3)!:n(n1)(n2)!2!(n2)!=12:12n(2n1)(2n2)3n(n1)=1212(2n1)(2n2)=36(n1)2(4n24n2n+2)=36n368n212n+4=36n368n248n+40=08(n26n+5)=0n26n+5=0n2n5n+5=0where80n(n1)5(n1)=0(n1)(n5)=0n1=0n=1 or n5=0n=5 n must be greater or equal to r=2, then n=5