Question 12, Exercise 8.1
Solutions of Question 12 of Exercise 8.1 of Unit 08: Fundamental of Trigonometry. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 12(i)
If α+β+γ=180∘, prove that: tanα+tanβ+tanγ=tanαtanβtanγ.
Solution.
Given: α+β+γ=180∘
This gives
α+β=180∘−γ⟹tan(α+β)=tan(180∘−γ)⟹tanα+tanβ1−tanαtanβ=tan(2(90)−γ)⟹tanα+tanβ=−tanγ[1−tanαtanβ]⟹tanα+tanβ=−tanγ+tanαtanβtanγ⟹tanα+tanβ+tanγ=tanαtanβtanγ
as required.
Question 12(ii)
If α+β+γ=180∘, prove that: cotα2+cotβ2+cotγ2=cotα2cotβ2cotγ2
Solution.
Given: α+β+γ=180∘
This gives
α+β=180∘−γ⟹α+β2=180−γ2⟹α2+β2=90−γ2
Now
tan(α2+β2)=tan(90−γ2)⟹tanα2+tanβ21−tanα2tanβ2=cotγ2∵tan(90−γ2)=cotγ2⟹tanα2tanβ2(1tanβ2+1tanα2)tanα2tanβ2(1tanα2tanβ2−1)=cotγ2⟹cotβ2+cotα2cotα2cotβ2−1=cotγ2⟹cotβ2+cotα2=cotγ2(cotα2cotβ2−1)⟹cotβ2+cotα2=cotα2cotβ2cotγ2−cotγ2⟹cotβ2+cotα2+cotγ2=cotα2cotβ2cotγ2
as required.
Question 12(iii)
If α+β+γ=180∘, prove that: tanα2tanβ2+tanβ2tanγ2+tanγ2tanα2+1=0
Solution.
Given: α+β+γ=180∘ This gives α+β=180∘−γ⟹α+β2=180−γ2⟹α2+β2=90−γ2 Now tan(α2+β2)=tan(90−γ2)⟹tanα2+tanβ21−tanα2tanβ2=cotγ2⟹tanα2+tanβ2cotγ2=1−tanα2tanβ2⟹(tanα2+tanβ2)tanγ2=1−tanα2tanβ2⟹tanγ2tanα2+tanβ2tanγ2=1−tanα2tanβ2⟹tanα2tanβ2+tanβ2tanγ2+tanγ2tanα2−1=0
as required.
Go to