Question 12, Exercise 8.1

Solutions of Question 12 of Exercise 8.1 of Unit 08: Fundamental of Trigonometry. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.

If α+β+γ=180, prove that: tanα+tanβ+tanγ=tanαtanβtanγ.

Solution.

Given: α+β+γ=180 This gives α+β=180γtan(α+β)=tan(180γ)tanα+tanβ1tanαtanβ=tan(2(90)γ)tanα+tanβ=tanγ[1tanαtanβ]tanα+tanβ=tanγ+tanαtanβtanγtanα+tanβ+tanγ=tanαtanβtanγ as required. GOOD

If α+β+γ=180, prove that: cotα2+cotβ2+cotγ2=cotα2cotβ2cotγ2

Solution.

Given: α+β+γ=180 This gives α+β=180γα+β2=180γ2α2+β2=90γ2 Now tan(α2+β2)=tan(90γ2)tanα2+tanβ21tanα2tanβ2=cotγ2tan(90γ2)=cotγ2tanα2tanβ2(1tanβ2+1tanα2)tanα2tanβ2(1tanα2tanβ21)=cotγ2cotβ2+cotα2cotα2cotβ21=cotγ2cotβ2+cotα2=cotγ2(cotα2cotβ21)cotβ2+cotα2=cotα2cotβ2cotγ2cotγ2cotβ2+cotα2+cotγ2=cotα2cotβ2cotγ2 as required. GOOD

If α+β+γ=180, prove that: tanα2tanβ2+tanβ2tanγ2+tanγ2tanα2+1=0

Solution.

Given: α+β+γ=180 This gives α+β=180γα+β2=180γ2α2+β2=90γ2 Now tan(α2+β2)=tan(90γ2)tanα2+tanβ21tanα2tanβ2=cotγ2tanα2+tanβ2cotγ2=1tanα2tanβ2(tanα2+tanβ2)tanγ2=1tanα2tanβ2tanγ2tanα2+tanβ2tanγ2=1tanα2tanβ2tanα2tanβ2+tanβ2tanγ2+tanγ2tanα21=0

as required. GOOD