Question 13, Exercise 8.1
Solutions of Question 13 of Exercise 8.1 of Unit 08: Fundamental of Trigonometry. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 13(i)
Express in the form of rsin(θ+ϕ): 12sinθ−5cosθ
Solution.
Let 12=rcosφ and −5=rsinφ.
Squaring and adding
(12)2+(−5)2=r2cos2φ+r2sin2φ⟹144+25=r2(cos2φ+sin2φ)⟹169=r2(1)⟹r=√169=13
Also
−512=rsinφrcosφ⟹−512=tanφ⟹φ=tan−1(−512)
Now
12sinθ+5cosθ=rcosφsinθ+rsinφcosθ=r(cosφsinθ+sinφcosθ)=rsin(θ+φ),
where r=13 and φ=tan−1(−512).
Question 13(ii)
Express in the form of rsin(θ+ϕ): 3sinθ+4cosθ
Solution.
Let 3=rcosφ and 4=rsinφ.
Squaring and adding:
(3)2+(4)2=r2cos2φ+r2sin2φ⟹9+16=r2(cos2φ+sin2φ)⟹25=r2(1)⟹r=√25=5.
Also
43=rsinφrcosφ⟹43=tanφ⟹φ=tan−1(43).
Now,
3sinθ+4cosθ=rcosφsinθ+rsinφcosθ=r(cosφsinθ+sinφcosθ)=rsin(θ+φ),
where r=5 and φ=tan−1(43).
Question 13(iii)
Express in the form of rsin(θ+ϕ): sinθ−cosθ
Solution.
Let 1=rcosφ and −1=rsinφ.
Squaring and adding:
(1)2+(−1)2=r2cos2φ+r2sin2φ⟹1+1=r2(cos2φ+sin2φ)⟹2=r2(1)⟹r=√2.
Also
−11=rsinφrcosφ⟹−11=tanφ⟹φ=tan−1(−1)=−π4.
Now
sinθ−cosθ=rcosφsinθ+rsinφcosθ=r(cosφsinθ+sinφcosθ)=rsin(θ+φ),
where r=√2 and φ=−π4.
Go to