Question 13, Exercise 8.1

Solutions of Question 13 of Exercise 8.1 of Unit 08: Fundamental of Trigonometry. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.

Express in the form of rsin(θ+ϕ): 12sinθ5cosθ

Solution.

Let 12=rcosφ and 5=rsinφ.
Squaring and adding (12)2+(5)2=r2cos2φ+r2sin2φ144+25=r2(cos2φ+sin2φ)169=r2(1)r=169=13 Also 512=rsinφrcosφ512=tanφφ=tan1(512)

Now 12sinθ+5cosθ=rcosφsinθ+rsinφcosθ=r(cosφsinθ+sinφcosθ)=rsin(θ+φ), where r=13 and φ=tan1(512). GOOD

Express in the form of rsin(θ+ϕ): 3sinθ+4cosθ

Solution.

Let 3=rcosφ and 4=rsinφ.
Squaring and adding: (3)2+(4)2=r2cos2φ+r2sin2φ9+16=r2(cos2φ+sin2φ)25=r2(1)r=25=5. Also 43=rsinφrcosφ43=tanφφ=tan1(43). Now, 3sinθ+4cosθ=rcosφsinθ+rsinφcosθ=r(cosφsinθ+sinφcosθ)=rsin(θ+φ), where r=5 and φ=tan1(43).

Express in the form of rsin(θ+ϕ): sinθcosθ

Solution.

Let 1=rcosφ and 1=rsinφ.
Squaring and adding: (1)2+(1)2=r2cos2φ+r2sin2φ1+1=r2(cos2φ+sin2φ)2=r2(1)r=2. Also 11=rsinφrcosφ11=tanφφ=tan1(1)=π4. Now sinθcosθ=rcosφsinθ+rsinφcosθ=r(cosφsinθ+sinφcosθ)=rsin(θ+φ), where r=2 and φ=π4.