Question 1, Exercise 8.1
Solutions of Question 1 of Exercise 8.1 of Unit 08: Fundamental of Trigonometry. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 1(i)
Find the value of cos(α±β),sin(α±β) and tan(α±β) for the pair of angles. α=180∘,β=60∘
Solution.
Given: α=180∘, β=60∘.
cos(α+β)=cosαcosβ−sinαsinβ⟹cos(180+60)=cos180cos60−sin180sin60⟹cos(180+60)=(−1)(12)−(0)(√32)=−12−0=−12
cos(α−β)=cosαcosβ+sinαsinβ⟹cos(180−60)=cos180cos60+sin180sin60⟹cos(180−60)=(−1)(12)+(0)(√32)=−12+0=−12
sin(α+β)=sinαcosβ+cosαsinβ⟹cos(180+60)=sin180cos60+cos180sin60⟹cos(180+60)=(0)(12)+(−1)(√32)=0−√32+0=−√32
sin(α−β)=sinαcosβ−cosαsinβ⟹sin(180−60)=sin180cos60−cos180sin60⟹sin(180−60)=(0)(12)−(−1)(√32)=0+√32+0=√32
tan(α+β)=tanα+tanβ1−tanαtanβ⟹tan(180+60)=tan180+tan601−tan180tan60⟹tan(180+60)=0+√31−(0)(√3)=√31−0=√3
tan(α−β)=tanα−tanβ1+tanαtanβ⟹tan(180−60)=tan180−tan601+tan180tan60⟹tan(180−60)=0−√31+(0)(√3)=−√31+0=−√3
Alternative Method
- cos(180+60)=cos(2(90)+60)=−cos60∘
- cos(180−60)=cos(2(90)−60)=−cos60∘
- sin(180+60)=sin(2(90)+60)=−sin60∘
- sin(180−60)=sin(2(90)−60)=sin60∘
- tan(180+60)=tan(2(90)+60)=tan60∘
- tan(180−60)=tan(2(90)−60)=−tan60∘
Question 1(ii)
Find the value of cos(α±β),sin(α±β) and tan(α±β) for the pair of angles. α=60∘,β=90∘
Solution.
Given: α=60∘, β=90∘ cos(α+β)=cosαcosβ−sinαsinβ⟹cos(60∘+90∘)=cos60∘cos90∘−sin60∘sin90∘⟹cos(60∘+90∘)=(12)(0)−(√32)(1)=0−√32⟹cos(60∘+90∘)=−√32 cos(α−β)=cosαcosβ+sinαsinβ⟹cos(60∘−90∘)=cos60∘cos90∘+sin60∘sin90∘⟹cos(60∘−90∘)=(12)(0)+(√32)(1)=0+√32⟹cos(60∘−90∘)=√32 sin(α+β)=sinαcosβ+cosαsinβ⟹sin(60∘+90∘)=sin60∘cos90∘+cos60∘sin90∘⟹sin(60∘+90∘)=(√32)(0)+(12)(1)=0+12⟹sin(60∘+90∘)=12 sin(α−β)=sinαcosβ−cosαsinβ⟹sin(60∘−90∘)=sin60∘cos90∘−cos60∘sin90∘⟹sin(60∘−90∘)=(√32)(0)−(12)(1)=0−12⟹sin(60∘−90∘)=−12 tan(α+β)=tanα+tanβ1−tanαtanβ⟹tan(60∘+90∘)=tan60∘+tan90∘1−tan60∘tan90∘⟹tan(60∘+90∘)=√3+∞1−(√3)(∞)=√3 tan(α−β)=tanα−tanβ1+tanαtanβ⟹tan(60∘−90∘)=tan60∘−tan90∘1+tan60∘tan90∘⟹tan(60∘−90∘)=√3−∞1+(√3)(∞)=√3
Question 1(iii)
Find the value of cos(α±β),sin(α±β) and tan(α±β) for the pair of angles. α=180∘,β=30∘
Solution.
Given: α=180∘, β=30∘. cos(α+β)=cosαcosβ−sinαsinβ⟹cos(180∘+30∘)=cos180∘cos30∘−sin180∘sin30∘⟹cos(180∘+30∘)=(−1)(√32)−(0)(12)=−√32−0=−√32 cos(α−β)=cosαcosβ+sinαsinβ⟹cos(180∘−30∘)=cos180∘cos30∘+sin180∘sin30∘⟹cos(180∘−30∘)=(−1)(√32)+(0)(12)=−√32+0=−√32 sin(α+β)=sinαcosβ+cosαsinβ⟹sin(180∘+30∘)=sin180∘cos30∘+cos180∘sin30∘⟹cos(180∘−30∘)=(0)(√32)+(−1)(12)=0−12=−12 sin(α−β)=sinαcosβ−cosαsinβ⟹sin(180∘−30∘)=sin180∘cos30∘−cos180∘sin30∘⟹sin(180∘−30∘)=(0)(√32)−(−1)(12)=0+12=12 tan(α+β)=tanα+tanβ1−tanαtanβ⟹tan(180∘+30∘)=tan180∘+tan30∘1−tan180∘tan30∘⟹tan(180∘+30∘)=0+1√31−(0)(1√3)=1√31−0=1√3=√33 tan(α−β)=tanα−tanβ1+tanαtanβ⟹tan(180∘−30∘)=tan180∘−tan30∘1+tan180∘tan30∘⟹tan(180∘−30∘)=0−1√31+(0)(1√3)=−1√31+0=−1√3=−√33
Question 1(iv)
Find the value of cos(α±β),sin(α±β) and tan(α±β) for the pair of angles. α=π,β=2π3
Solution.
Given: α=π, β=2π3. cos(α+β)=cosαcosβ−sinαsinβ⟹cos(π+2π3)=cosπcos2π3−sinπsin2π3⟹cos(π+2π3)=(−1)(−12)−(0)(√32)=12−0=12 cos(α−β)=cosαcosβ+sinαsinβ⟹cos(π−2π3)=cosπcos2π3+sinπsin2π3⟹cos(π−2π3)=(−1)(−12)+(0)(√32)=12+0=12 sin(α+β)=sinαcosβ+cosαsinβ⟹sin(π+2π3)=sinπcos2π3+cosπsin2π3⟹sin(π+2π3)=(0)(−12)+(−1)(√32)=0−√32=−√32 sin(α−β)=sinαcosβ−cosαsinβ⟹sin(π−2π3)=sinπcos2π3−cosπsin2π3⟹sin(π−2π3)=(0)(−12)−(−1)(√32)=0+√32=√32 tan(α+β)=tanα+tanβ1−tanαtanβ⟹tan(π+2π3)=tanπ+tan2π31−tanπtan2π3⟹tan(π+2π3)=0+(−√3)1−(0)(−√3)=−√31=−√3 tan(α−β)=tanα−tanβ1+tanαtanβ⟹tan(π−2π3)=tanπ−tan2π31+tanπtan2π3⟹tan(π−2π3)=0−(−√3)1+(0)(−√3)=√31=√3
Question 1(v)
Find the value of cos(α±β),sin(α±β) and tan(α±β) for the pair of angles. α=4π3,β=π6
Solution.
Given: α=4π3, β=π6.
cos(α+β)=cosαcosβ−sinαsinβ⟹cos(4π3+π6)=cos4π3cosπ6−sin4π3sinπ6⟹cos(3π2)=(−12)(√32)−(−√32)(12)=−√34+√34=0=cosπ2 cos(α−β)=cosαcosβ+sinαsinβ⟹cos(4π3−π6)=cos4π3cosπ6+sin4π3sinπ6⟹cos(7π6)=(−12)(√32)+(−√32)(12)=−√34−√34=−√32=cos(5π6) sin(α+β)=sinαcosβ+cosαsinβ⟹sin(4π3+π6)=sin4π3cosπ6+cos4π3sinπ6⟹sin(4π3+π6)=(−√32)(√32)+(−12)(12)=−34−14=−1=sin(−π2) sin(α−β)=sinαcosβ−cosαsinβ⟹sin(4π3−π6)=sin4π3cosπ6−cos4π3sinπ6⟹sin(4π3−π6)=(−√32)(√32)−(−12)(12)=−34+14=−12=sin(−π6) tan(α+β)=tanα+tanβ1−tanαtanβ⟹tan(4π3+π6)=tan4π3+tanπ61−tan4π3tanπ6⟹tan(4π3+π6)=−√3+1√31−(−√3)(1√3)=−√3+1√31+1=−√3+1√32=−3+12√3=−22√3=−1√3=−tanπ3 tan(α−β)=tanα−tanβ1+tanαtanβ⟹tan(4π3−π6)=tan4π3−tanπ61+tan4π3tanπ6⟹tan(4π3−π6)=−√3−1√31+(−√3)(1√3)=−√3−1√31−1(undefined)
Question 1(vi)
Find the value of cos(α±β),sin(α±β) and tan(α±β) for the pair of angles. α=7π4,β=3π4
Solution.
Given: α=7π4, β=3π4. cos(α+β)=cosαcosβ−sinαsinβ⟹cos(7π4+3π4)=cos7π4cos3π4−sin7π4sin3π4⟹cos(2π)=(1√2)(−1√2)−(−1√2)(1√2)=−12+12=0=cos0 cos(α−β)=cosαcosβ+sinαsinβ⟹cos(7π4−3π4)=cos7π4cos3π4+sin7π4sin3π4⟹cos(π)=(1√2)(−1√2)+(−1√2)(1√2)=−12−12=−1=cosπ sin(α+β)=sinαcosβ+cosαsinβ⟹sin(7π4+3π4)=sin7π4cos3π4+cos7π4sin3π4⟹sin(2π)=(−1√2)(−1√2)+(1√2)(1√2)=12+12=1=sin0 sin(α−β)=sinαcosβ−cosαsinβ⟹sin(7π4−3π4)=sin7π4cos3π4−cos7π4sin3π4⟹sin(π)=(−1√2)(−1√2)−(1√2)(1√2)=12−12=0=sinπ tan(α+β)=tanα+tanβ1−tanαtanβ⟹tan(7π4+3π4)=tan7π4+tan3π41−tan7π4tan3π4⟹tan(2π)=−1+(−1)1−(−1)(−1)=−21−1(undefined) tan(α−β)=tanα−tanβ1+tanαtanβ⟹tan(7π4−3π4)=tan7π4−tan3π41+tan7π4tan3π4⟹tanπ=−1−(−1)1+(−1)(−1)=01+1=0=tanπ
Go to