Question 1, Exercise 8.1

Solutions of Question 1 of Exercise 8.1 of Unit 08: Fundamental of Trigonometry. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.

Find the value of cos(α±β),sin(α±β) and tan(α±β) for the pair of angles. α=180,β=60

Solution.

Given: α=180, β=60.

cos(α+β)=cosαcosβsinαsinβcos(180+60)=cos180cos60sin180sin60cos(180+60)=(1)(12)(0)(32)=120=12

cos(αβ)=cosαcosβ+sinαsinβcos(18060)=cos180cos60+sin180sin60cos(18060)=(1)(12)+(0)(32)=12+0=12

sin(α+β)=sinαcosβ+cosαsinβcos(180+60)=sin180cos60+cos180sin60cos(180+60)=(0)(12)+(1)(32)=032+0=32

sin(αβ)=sinαcosβcosαsinβsin(18060)=sin180cos60cos180sin60sin(18060)=(0)(12)(1)(32)=0+32+0=32

tan(α+β)=tanα+tanβ1tanαtanβtan(180+60)=tan180+tan601tan180tan60tan(180+60)=0+31(0)(3)=310=3

tan(αβ)=tanαtanβ1+tanαtanβtan(18060)=tan180tan601+tan180tan60tan(18060)=031+(0)(3)=31+0=3 GOOD m(

Alternative Method

  • cos(180+60)=cos(2(90)+60)=cos60
  • cos(18060)=cos(2(90)60)=cos60
  • sin(180+60)=sin(2(90)+60)=sin60
  • sin(18060)=sin(2(90)60)=sin60
  • tan(180+60)=tan(2(90)+60)=tan60
  • tan(18060)=tan(2(90)60)=tan60

GOOD

Find the value of cos(α±β),sin(α±β) and tan(α±β) for the pair of angles. α=60,β=90

Solution.

Given: α=60, β=90 cos(α+β)=cosαcosβsinαsinβcos(60+90)=cos60cos90sin60sin90cos(60+90)=(12)(0)(32)(1)=032cos(60+90)=32 cos(αβ)=cosαcosβ+sinαsinβcos(6090)=cos60cos90+sin60sin90cos(6090)=(12)(0)+(32)(1)=0+32cos(6090)=32 sin(α+β)=sinαcosβ+cosαsinβsin(60+90)=sin60cos90+cos60sin90sin(60+90)=(32)(0)+(12)(1)=0+12sin(60+90)=12 sin(αβ)=sinαcosβcosαsinβsin(6090)=sin60cos90cos60sin90sin(6090)=(32)(0)(12)(1)=012sin(6090)=12 tan(α+β)=tanα+tanβ1tanαtanβtan(60+90)=tan60+tan901tan60tan90tan(60+90)=3+1(3)()=3 tan(αβ)=tanαtanβ1+tanαtanβtan(6090)=tan60tan901+tan60tan90tan(6090)=31+(3)()=3

Find the value of cos(α±β),sin(α±β) and tan(α±β) for the pair of angles. α=180,β=30

Solution.

Given: α=180, β=30. cos(α+β)=cosαcosβsinαsinβcos(180+30)=cos180cos30sin180sin30cos(180+30)=(1)(32)(0)(12)=320=32 cos(αβ)=cosαcosβ+sinαsinβcos(18030)=cos180cos30+sin180sin30cos(18030)=(1)(32)+(0)(12)=32+0=32 sin(α+β)=sinαcosβ+cosαsinβsin(180+30)=sin180cos30+cos180sin30cos(18030)=(0)(32)+(1)(12)=012=12 sin(αβ)=sinαcosβcosαsinβsin(18030)=sin180cos30cos180sin30sin(18030)=(0)(32)(1)(12)=0+12=12 tan(α+β)=tanα+tanβ1tanαtanβtan(180+30)=tan180+tan301tan180tan30tan(180+30)=0+131(0)(13)=1310=13=33 tan(αβ)=tanαtanβ1+tanαtanβtan(18030)=tan180tan301+tan180tan30tan(18030)=0131+(0)(13)=131+0=13=33

Find the value of cos(α±β),sin(α±β) and tan(α±β) for the pair of angles. α=π,β=2π3

Solution.

Given: α=π, β=2π3. cos(α+β)=cosαcosβsinαsinβcos(π+2π3)=cosπcos2π3sinπsin2π3cos(π+2π3)=(1)(12)(0)(32)=120=12 cos(αβ)=cosαcosβ+sinαsinβcos(π2π3)=cosπcos2π3+sinπsin2π3cos(π2π3)=(1)(12)+(0)(32)=12+0=12 sin(α+β)=sinαcosβ+cosαsinβsin(π+2π3)=sinπcos2π3+cosπsin2π3sin(π+2π3)=(0)(12)+(1)(32)=032=32 sin(αβ)=sinαcosβcosαsinβsin(π2π3)=sinπcos2π3cosπsin2π3sin(π2π3)=(0)(12)(1)(32)=0+32=32 tan(α+β)=tanα+tanβ1tanαtanβtan(π+2π3)=tanπ+tan2π31tanπtan2π3tan(π+2π3)=0+(3)1(0)(3)=31=3 tan(αβ)=tanαtanβ1+tanαtanβtan(π2π3)=tanπtan2π31+tanπtan2π3tan(π2π3)=0(3)1+(0)(3)=31=3

Find the value of cos(α±β),sin(α±β) and tan(α±β) for the pair of angles. α=4π3,β=π6

Solution.

Given: α=4π3, β=π6.

cos(α+β)=cosαcosβsinαsinβcos(4π3+π6)=cos4π3cosπ6sin4π3sinπ6cos(3π2)=(12)(32)(32)(12)=34+34=0=cosπ2 cos(αβ)=cosαcosβ+sinαsinβcos(4π3π6)=cos4π3cosπ6+sin4π3sinπ6cos(7π6)=(12)(32)+(32)(12)=3434=32=cos(5π6) sin(α+β)=sinαcosβ+cosαsinβsin(4π3+π6)=sin4π3cosπ6+cos4π3sinπ6sin(4π3+π6)=(32)(32)+(12)(12)=3414=1=sin(π2) sin(αβ)=sinαcosβcosαsinβsin(4π3π6)=sin4π3cosπ6cos4π3sinπ6sin(4π3π6)=(32)(32)(12)(12)=34+14=12=sin(π6) tan(α+β)=tanα+tanβ1tanαtanβtan(4π3+π6)=tan4π3+tanπ61tan4π3tanπ6tan(4π3+π6)=3+131(3)(13)=3+131+1=3+132=3+123=223=13=tanπ3 tan(αβ)=tanαtanβ1+tanαtanβtan(4π3π6)=tan4π3tanπ61+tan4π3tanπ6tan(4π3π6)=3131+(3)(13)=31311(undefined)

Find the value of cos(α±β),sin(α±β) and tan(α±β) for the pair of angles. α=7π4,β=3π4

Solution.

Given: α=7π4, β=3π4. cos(α+β)=cosαcosβsinαsinβcos(7π4+3π4)=cos7π4cos3π4sin7π4sin3π4cos(2π)=(12)(12)(12)(12)=12+12=0=cos0 cos(αβ)=cosαcosβ+sinαsinβcos(7π43π4)=cos7π4cos3π4+sin7π4sin3π4cos(π)=(12)(12)+(12)(12)=1212=1=cosπ sin(α+β)=sinαcosβ+cosαsinβsin(7π4+3π4)=sin7π4cos3π4+cos7π4sin3π4sin(2π)=(12)(12)+(12)(12)=12+12=1=sin0 sin(αβ)=sinαcosβcosαsinβsin(7π43π4)=sin7π4cos3π4cos7π4sin3π4sin(π)=(12)(12)(12)(12)=1212=0=sinπ tan(α+β)=tanα+tanβ1tanαtanβtan(7π4+3π4)=tan7π4+tan3π41tan7π4tan3π4tan(2π)=1+(1)1(1)(1)=211(undefined) tan(αβ)=tanαtanβ1+tanαtanβtan(7π43π4)=tan7π4tan3π41+tan7π4tan3π4tanπ=1(1)1+(1)(1)=01+1=0=tanπ