Question 2, Exercise 8.1
Solutions of Question 2 of Exercise 8.1 of Unit 08: Fundamental of Trigonometry. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 2(a)
Find the exact value of cos15∘ by using cos(45∘−30∘).
Solution.
cos15∘=cos(45∘−30∘)=cos45cos30+sin45sin30=1√2⋅√32+1√2⋅12=√32√2+12√2=√3+12√2.
Question 2(b)
Use the value of cos15∘=√3+12√2 to find cos165∘ by using cos(180∘−15∘).
Solution.
cos165∘=cos(180∘−15∘)=−cos15(∵cos(180−θ)=−cosθ)=−√3+12√2.
Alternative Method (if cos15∘ is not given)
cos165∘=cos(180∘−15∘)=−cos15(∵cos(180−θ)=−cosθ)=−[cos(45∘−30∘)]=−[cos45cos30+sin45sin30]=−[1√2⋅√32+1√2⋅12]=−[√32√2+12√2]=−√3+12√2.
Question 2(c)
Use the value of cos15∘=√3+12√2 to find cos345∘ by using cos(360∘−15∘).
Solution.
We are given that cos15∘=√3+12√2. Now, let's find cos345∘. cos345∘=cos(360∘−15∘)=cos15∘(∵cos(360∘−θ)=cosθ)=√3+12√2. Thus, cos345∘=√3+12√2.
Alternative Method (if cos15∘ is not given)
To find cos345∘, we use the identity cos(360∘−θ)=cosθ. cos345∘=cos(360∘−15∘)=cos15∘=cos(45∘−30∘)=cos45∘cos30∘+sin45∘sin30∘=1√2⋅√32+1√2⋅12=√32√2+12√2=√3+12√2. Thus, cos345∘=√3+12√2.
Question 2(d)
Use cosA=sin(90∘−A) to find the exact value of sin75∘ and then find tan75∘.
Solution.
Given cosA=sin(90∘−A)...(1)
Put A=15∘, we get
sin(90−15)=cos15∘⟹sin75∘=cos15∘=cos(45∘−30∘)=cos45cos30+sin45sin30=1√2⋅√32+1√2⋅12=√32√2+12√2⟹sin75∘=√3+12√2.
Now put A=75∘ in (1)
cos75∘=sin(90−75)=sin15∘=sin(45∘−30∘)=sin45cos30−cos45sin30=1√2⋅√32−1√2⋅12=√32√2−12√2=√3−12√2.
Now
tan75∘=sin75∘cos75∘=(√3+1)/2√2(√3−1)/2√2
⟹tan75∘=√3+1√3−1
Go to