Question 3, Exercise 8.1
Solutions of Question 3 of Exercise 8.1 of Unit 08: Fundamental of Trigonometry. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 3(a)
Find the exact value of cos120∘ by using cos(180∘−60∘) and cos(90∘+30∘).
Solution.
cos120∘=cos(180∘−60∘)=−cos60∘=−12.
Also
cos120∘=cos(90∘+30∘)=−sin30∘=−12.
Question 3(b)
Find the exact value of sin120∘ and then tan120∘.
Solution.
sin120∘=sin(180∘−60∘)=sin60∘=√32.
Also, we have cos120∘=cos(180∘−60∘)=−cos60∘=−12.
Now tan120∘=sin120∘cos120∘=√3/2−1/2=−√3.
Question 3(c)
Find the exact value of cos75∘ by using cos(120∘−45∘).
Solution.
cos75∘=cos(120∘−45∘)=cos120∘cos45∘+sin120∘sin45∘=(−12)(1√2)+(√32)(1√2)=−12√2+√32√2=√3−12√2.
Question 3(d)
Use the value of cos75∘=√3−12√2 to find cos105∘ by using cos(180∘−75∘).
Solution.
cos105∘=cos(180∘−75∘)=−cos75∘(∵cos(180∘−θ)=−cosθ)=−(√3−12√2)=−(√3−1)2√2=1−√32√2.
Question 3(e)
Use the value of cos75∘=√3−12√2 to find cos285∘ by using cos(360∘−75∘).
Solution.
cos285∘=cos(360∘−75∘)=cos75∘(∵cos(360∘−θ)=cosθ)=√3−12√2.
Question 3(f)
Find the exact value of sin15∘.
Solution.
sin15∘=sin(45∘−30∘)=sin45cos30−cos45sin30=(1√2)(√32)−(1√2)(12)=√32√2−12√2=√3−12√2.
Go to