Question 8(xiii, xiv & xv) Exercise 8.2
Solutions of Question 8(xiii, xiv & xv) of Exercise 8.2 of Unit 08: Fundamental of Trigonometry. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 8(xiii)
Verify the identities: csc2α−cot2α=tanα
Solution.
LHS=csc2α−cot2α=1sin2α−cos2αsin2α=1−cos2αsin2α=2sin2α2sinαcosα=tanα=RHS
Question 8(xiv)
Verify the identities: cos3x−sin3xcosx−sinx=2+sin2x2
Solution.
LHS=cos3x−sin3xcosx−sinx=(cos3x−sin3x)(cosx+sinx)(cosx−sinx)((cosx+sinx))=cos3xcosx+cos3xsinx−sin3xcosx−sin3xsinxcos2x−sin2x=(cos3xcosx−sin3xsinx)+(cos3xsinx−sin3xcosx)cos2x=cos(3x+x)+sin(3x−x)cos2x=cos4x+sin2xcos2x≠RHS
This question doesn't seems correct.
Question 8(xv)
Verify the identities: sin3αsinα−cos3αcosα=2
Solution.
LHS=sin3αsinα−cos3αcosα=sin3αcosα−cos3αsinαsinαcosα=sin(3α−α)sinαcosα=sin(2α)sinαcosα=2sinαcosαsinαcosα=2=RHS
Alternative Method LHS=sin3αsinα−cos3αcosα=3sinα−4sin3αsinα−4cos3α−3cosαcosα=3−4sin2α−4cos2α+3=6−4(sin2α+cos2α)=2=RHS
Go to