Question 8(xiii, xiv & xv) Exercise 8.2

Solutions of Question 8(xiii, xiv & xv) of Exercise 8.2 of Unit 08: Fundamental of Trigonometry. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.

Verify the identities: csc2αcot2α=tanα

Solution.

LHS=csc2αcot2α=1sin2αcos2αsin2α=1cos2αsin2α=2sin2α2sinαcosα=tanα=RHS GOOD

Verify the identities: cos3xsin3xcosxsinx=2+sin2x2

Solution.

LHS=cos3xsin3xcosxsinx=(cos3xsin3x)(cosx+sinx)(cosxsinx)((cosx+sinx))=cos3xcosx+cos3xsinxsin3xcosxsin3xsinxcos2xsin2x=(cos3xcosxsin3xsinx)+(cos3xsinxsin3xcosx)cos2x=cos(3x+x)+sin(3xx)cos2x=cos4x+sin2xcos2xRHS

This question doesn't seems correct.

Verify the identities: sin3αsinαcos3αcosα=2

Solution.

LHS=sin3αsinαcos3αcosα=sin3αcosαcos3αsinαsinαcosα=sin(3αα)sinαcosα=sin(2α)sinαcosα=2sinαcosαsinαcosα=2=RHS

Alternative Method LHS=sin3αsinαcos3αcosα=3sinα4sin3αsinα4cos3α3cosαcosα=34sin2α4cos2α+3=64(sin2α+cos2α)=2=RHS