Question 5 Exercise 8.2
Solutions of Question 5 of Exercise 8.2 of Unit 08: Fundamental of Trigonometry. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 5(i)
Find exact values for sinθ, cosθ and tanθ using the information given: sin2θ=2425,2θ in QII
Solution.
Given: sin2θ=2425, 2θ in QII.
We have cos2θ=±√1−sin22θ
Since 2θ in QII, therefore cos2θ is negative.
cos2θ=−√1−sin22θ=−√1−(2425)2=−√49625=−725
Also we have sinθ=±√1−cos2θ2
As π2<2θ<π, so π4<θ<π2, that is, θ lies in QI and sinθ>0. Thus
sinθ=√1−cos2θ2=√1−(−725)2=√32252=√1625
⟹sinθ=45
Also cosθ=±√1−sinθ
As θ lies in QI, therefore cosθ>0, thus
cosθ=√1−sinθ=√1−(45)2=√1−1625=√925
⟹cosθ=35
Now
tanθ=sinθcosθ=4/53/5
⟹tanθ=43
Question 5(ii)
Find exact values for sinθ,cosθ and tanθ using the information given: cos2θ=−725,2θ in QIII
Solution.
Given: cos2θ=−725 and 2θ lies in QIII.
We have:
sin2θ=±√1−cos22θ
Since 2θ lies in QIII, we know that sin2θ<0. Therefore: sin2θ=−√1−(−725)2=−√1−49625=−√576625=−2425. Also, we have:
sinθ=±√1−cos2θ2.
As π<2θ<3π2 implies π2<θ<π, i.e., θ lies in QII, we know that sinθ>0. Thus: sinθ=√1−(−725)2=√1+7252=√32252=√1625=45. ⟹sinθ=45.
Also cosθ=±√1−sin2θ.
AS θ lies in QII, cosθ<0, so: cosθ=−√1−(45)2=−√1−1625=−√925=−35. ⟹cosθ=−35. Now tanθ=sinθcosθ=45−35=−43. ⟹tanθ=−43.
Question 5(iii)
Find exact values for sinθ,cosθ and tanθ using the information given: sin2θ=−240289,2θ in QIII
Solution.
Given: sin2θ=−240289 and 2θ lies in QIII.
We have:
cos2θ=±√1−sin22θ.
Since 2θ lies in QIII, we know that cos2θ<0. Therefore: cos2θ=−√1−(−240289)2=−√1−5760083521=−√2592183521=−161289. Also, we have,
sinθ=±√1−cos2θ2
As π<2θ<3π2 implies π2<θ<π, i.e., θ lies in QII, we know that sinθ>0. Thus: sinθ=√1−(−161289)2=√1+1612892=√4502892=√225289=1517. ⟹sinθ=1517. Also
cosθ=±√1−sin2θ
As θ lies in QII, cosθ<0, so: cosθ=−√1−(1517)2=−√1−225289=−√64289=−817. ⟹cosθ=−817. Now tanθ=sinθcosθ=1517−817=−158. ⟹tanθ=−158.
Question 5(iv)
Find exact values for sinθ,cosθ and tanθ using the information given: cos2θ=120169,2θ in QIV
Solution.
Given: cos2θ=120169 and 2θ lies in QIV.
We have:
sin2θ=±√1−cos22θ
Since 2θ lies in QIV, we know that sin2θ<0. Therefore:
sin2θ=−√1−(120169)2=−√1−1440028561=−√1416128561=−119169.
Also, we have:
sinθ=±√1−cos2θ2
As 3π2<2θ<2π implies 3π4<θ<π, i.e., θ lies in QII, we know that sinθ>0. Thus: sinθ=√1−1201692=√491692=√49338=7√338. ⟹sinθ=7√338.
cosθ=±√1−sin2θ
As θ lies in QII, we know that cosθ<0. Therefore: cosθ=−√1−(7√338)2=−√1−49338=−√289338=−17√338. ⟹cosθ=−17√338. tanθ=sinθcosθ=7√338−17√338=−717. ⟹tanθ=−717.
Go to