Question 6 Exercise 8.2

Solutions of Question 6 of Exercise 8.2 of Unit 08: Fundamental of Trigonometry. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.

Use a double-angle identity to find exact values for the expression: sin15cos15

Solution.

We have double-angle identity: sin2θ=2sinθcosθ This gives sinθcosθ=12sin2θ Put θ=15 sin15cos15=12sin2(15)12sin30=12×12 sin15cos15=14 GOOD

Use a double-angle identity to find exact values for the expressions: cos215sin215

Solution.

We have double-angle identity: cos2θsin2θ=cos2θ=

Put θ=15 cos215sin215=cos2(15)=cos30=32 cos215sin215=32

Use a double-angle identity to find exact values for the expression: 12sin2(π8)

Solution. We have a double-angle identity: cos2α=12sin2α. That is 12sin2α=cos2α. Put α=π8, we have 12sin2(π8)=cos2(π8)=cos(π4) 12sin2(π8)=12 GOOD

Use a double-angle identity to find exact values for the expression: 2cos2(π12)1

Solution.

We have a double-angle identity: cos2α=2cos2α1. That is 2cos2α1=cos2α. Put α=π12, we have 2cos2(π12)1=cos2(π12)=cos(π6) 2cos2(π12)1=12

Use a double-angle identity to find exact values for the expression: 2tan(π12)1tan2(π12)

Solution.

We have a double-angle identity: tan2α=2tanα12tanα Put θ=π12: 2tan(π12)1tan2(π12)=tan2(π12)=tan(π6)=13 2tan(π12)1tan2(π12)=13