Question 6 Exercise 8.2
Solutions of Question 6 of Exercise 8.2 of Unit 08: Fundamental of Trigonometry. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 6(i)
Use a double-angle identity to find exact values for the expression: sin15∘cos15∘
Solution.
We have double-angle identity:
sin2θ=2sinθcosθ
This gives
sinθcosθ=12sin2θ
Put θ=15∘
sin15∘cos15∘=12sin2(15∘)12sin30∘=12×12
⟹sin15∘cos15∘=14
Question 6(ii)
Use a double-angle identity to find exact values for the expressions: cos215∘−sin215∘
Solution.
We have double-angle identity: cos2θ−sin2θ=cos2θ=
Put θ=15∘ cos215∘−sin215∘=cos2(15∘)=cos30∘=√32 ⟹cos215∘−sin215∘=√32
Question 6(iii)
Use a double-angle identity to find exact values for the expression: 1−2sin2(π8)
Solution.
We have a double-angle identity:
cos2α=1−2sin2α.
That is
1−2sin2α=cos2α.
Put α=π8, we have
1−2sin2(π8)=cos2(π8)=cos(π4)
⟹1−2sin2(π8)=1√2
Question 6(iv)
Use a double-angle identity to find exact values for the expression: 2cos2(π12)−1
Solution.
We have a double-angle identity: cos2α=2cos2α−1. That is 2cos2α−1=cos2α. Put α=π12, we have 2cos2(π12)−1=cos2(π12)=cos(π6) ⟹2cos2(π12)−1=12
Question 6(v)
Use a double-angle identity to find exact values for the expression: 2tan(π12)1−tan2(π12)
Solution.
We have a double-angle identity: tan2α=2tanα1−2tanα Put θ=π12: 2tan(π12)1−tan2(π12)=tan2(π12)=tan(π6)=1√3 ⟹2tan(π12)1−tan2(π12)=1√3
Go to